How can I use ODE45 continuously?
1 view (last 30 days)
Show older comments
This is the code I initially made.
[T,Y] = ode45(@hw,[0 100],[0.01 10]);
And this is function hw
//
function dy = hw(t,y)
D=0.01;
um=0.2;
Ks=0.05;
X0=0.01;
Sf=10;
dy = zeros(2,1);
dy(1) = -D*y(1) + (um*y(2))./(Ks+y(2))*y(1);
dy(2) = Sf * D - D*y(2) - (um*y(1)*y(2))./(0.4*(Ks+y(2)));
//
For this time I want to use D = 0.01 for t=0~50, and D =0.015 for t=50~100.
And value of X0, Sf for t=50~100 should be the value of X(which is y(1)), S(which is y(2)) at t=50.
How can I make this work?
0 Comments
Accepted Answer
Chunru
on 28 Jul 2021
Edited: Chunru
on 28 Jul 2021
Just change D depending on t. Run the solver over the whole time period.
[Update 2: Change the ode options, ie. smaller time step. Three methods gives similar results. It seems that default time step is not good enough for this problem. The branching seems cause no problem as well.]
opts = odeset('MaxStep', 0.001);
[T,Y] = ode45(@hw1,[0 100],[0.01 10], opts);
h(1)=subplot(131); plot(T, Y);
title('D=0.01');
[T,Y] = ode45(@hw,[0 100],[0.01 10], opts);
h(2)=subplot(132); plot(T, Y);
title('D: Branching');
[T1,Y1] = ode45(@hw1,[0 50],[0.01 10], opts);
[T2 Y2] = ode45(@hw2,[50+eps 100],Y1(end,:), opts);
T=[T1;T2]; Y=[Y1; Y2];
h(3)=subplot(133); plot(T, Y)
title('Two ODEs')
%linkaxes(h, 'xy')
function dy = hw(t,y)
%D=0.01;
if t<=50
D = 0.01;
else
D = 0.015;
end
um=0.2;
Ks=0.05;
X0=0.01;
Sf=10;
dy = zeros(2,1);
dy(1) = -D*y(1) + (um*y(2))./(Ks+y(2))*y(1);
dy(2) = Sf * D - D*y(2) - (um*y(1)*y(2))./(0.4*(Ks+y(2)));
end
function dy = hw1(t,y)
D = 0.01;
um=0.2;
Ks=0.05;
X0=0.01;
Sf=10;
dy = zeros(2,1);
dy(1) = -D*y(1) + (um*y(2))./(Ks+y(2))*y(1);
dy(2) = Sf * D - D*y(2) - (um*y(1)*y(2))./(0.4*(Ks+y(2)));
end
function dy = hw2(t,y)
D = 0.015;
um=0.2;
Ks=0.05;
X0=0.01;
Sf=10;
dy = zeros(2,1);
dy(1) = -D*y(1) + (um*y(2))./(Ks+y(2))*y(1);
dy(2) = Sf * D - D*y(2) - (um*y(1)*y(2))./(0.4*(Ks+y(2)));
end
3 Comments
More Answers (0)
See Also
Categories
Find more on Ordinary Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!