You are now following this question
- You will see updates in your followed content feed.
- You may receive emails, depending on your communication preferences.
Finding the intersection points between two curves
10 views (last 30 days)
Show older comments
I need to find the intersection points of this equation:
this is my code. I dont know what is the best way . Also when I plot in terms of I have some periods but when I plot in terms of β I have only one period. How I can plot it in terms of beta but with nulti perids?
many thanks in advance
h=20;
K=13.6;
l=1148e-6;
g1=fplot(@(beta)tan(beta*l));
hold on
g2=fplot(@(beta)2*h*beta*K/(K^2*beta^2-h^2));
Warning: Function behaves unexpectedly on array inputs. To improve performance, properly vectorize your function to return an output with the same size and shape as the input arguments.
Accepted Answer
Star Strider
on 30 Jul 2021
Several options —
h=20;
K=13.6;
l=1148e-6;
f1 = @(beta)tan(beta*l);
f2 = @(beta)2*h*beta*K./(K^2*beta.^2-h^2);
figure
g1 = fplot(f1);
hold on
g2 = fplot(f2);
g3 = fplot(@(beta) f2(beta)-f1(beta), '--'); % Use 'fsolve' On 'g3' To Find The Intersections
Another option:
format long
Xint = interp1(g3.YData, g3.XData, 0)
.
11 Comments
raha ahmadi
on 30 Jul 2021
Dear Star Strider As always very thanks. Is there any way to get more answers in the other periods? I need multiple answers With best wishes
Star Strider
on 30 Jul 2021
There do not appear to be any other intersections —
h=20;
K=13.6;
l=1148e-6;
f1 = @(beta)tan(beta*l);
f2 = @(beta)2*h*beta*K./(K^2*beta.^2-h^2);
figure
g1 = fplot(f1);
hold on
g2 = fplot(f2);
g3 = fplot(@(beta) f2(beta)-f1(beta), [-50 50], '--'); % Use 'fsolve' On 'g3' To Find The Intersections
grid
format long
Xint = interp1(g3.YData, g3.XData, 0)
Xint =
0
If there sere other intersections, the easiest way to find them would be:
zxi = find(diff(sign(g3.YData)))
zxi = 1×4
99 170 171 242
And to my surprise, it seems that there are more roots!
So to get more precise results:
for k = 1:numel(zxi)
idxrng = (-1:1)+zxi(k); % Index Range For Interpolation
rootval(k) = interp1(g3.YData(idxrng), g3.XData(idxrng), 0);
end
rootval
rootval = 1×4
-1.472819271901502 0 0 1.464295806398758
The slope of ‘g1’ prevents the roots from being symmetrical about the origin.
.
Star Strider
on 31 Jul 2021
My pleasure!
If you want to calculate those roots —
h=20;
K=13.6;
l=1148e-6;
g1=fplot(@(betaL)tan(betaL));
hold on
g2=fplot(@(betaL)2*h.*betaL/l*K./(h^2-K^2.*betaL/l.^2));
hold on
f3 = @(betaL) (tan(betaL)) - (2*h.*betaL/l*K./(h^2-K^2.*betaL/l.^2));
g3 = fplot(f3, [-1 1]*20, ':');
zxi = find(diff(sign(g3.YData)));
for k = 1:numel(zxi)
idxrng = (-1:1)+zxi(k); % Index Range For Interpolation
xv(k,:) = interp1(g3.YData(idxrng), g3.XData(idxrng), 0);
yv(k,:) = interp1(g3.XData, g3.YData, xv(k));
end
plot(xv(abs(yv)<1), zeros(size(xv(abs(yv)<1))), 'xr')
hold off
Intersections = table(xv(abs(yv)<1),yv(abs(yv)<1), 'VariableNames',{'x','y'})
Intersections = 14×2 table
x y
_______ ___________
-18.853 3.747e-16
-15.711 -1.4554e-15
-12.569 9.7145e-17
-9.428 2.498e-16
-6.2861 6.5919e-17
-3.1452 7.4593e-17
0 0
0 0
3.1386 -1.8735e-16
6.2802 3.1225e-16
9.4214 -9.1593e-16
12.563 -9.5063e-16
15.704 -5.1348e-16
18.846 -8.3267e-16
.
raha ahmadi
on 31 Jul 2021
Dear Star Strider
I really thank you for your help. I learned alot from your code. It is very helpful for me
the period of the tangent function in this case is relatively large so I m confused. Because in each period of tan function I have a intersection point.
Wish you all the best
Star Strider
on 31 Jul 2021
As always, my pleasure!
Thank you for your compliment!
I calculated the intersections. I do not understand.
.
raha ahmadi
on 1 Aug 2021
Edited: raha ahmadi
on 1 Aug 2021
Hi Star Strider sorry about the delay in response, I did not see your comment. I think I know the reason. In the first picture which you and I plotted the blue graph is the tangent function (in spite of what we expect). In this picture the period is very long and if you extend the axes limits you can see the difference between scales. But in the last picture you sent, by changing the scale of argument of tangent made the period of tangent very short.(remember that in the first picture scaling factor is about 1e-6 and this make period very long) I attached the two pictures for convenience
Star Strider
on 1 Aug 2021
O.K.
I do not understand the problem or how this relates to the tangent function.
figure
hfp = fplot(@(x) 548*x./(187.7*x.^2-400), [-1 1]*30);
hold on
rootx = interp1(hfp.YData, hfp.XData, 0)
rootx = 0
plot(rootx, 0, 'xr', 'MarkerSize',7.5)
hold off
grid
legend('$f(x)=\frac{548\ x}{187.7\ x^2-400}$', 'Intercept', 'Interpreter','latex', 'Location','best')
The one root is easy enough to calculate.
.
raha ahmadi
on 7 Aug 2021
Edited: raha ahmadi
on 7 Aug 2021
Hi. very sorry for delay in response. Maybe it relates to roots function. root can find the roots of the polynomials. if you use it for sin for example you only get one root too. How can we fix it?
clc
clear
close all
x=[-1000,1000];
y=sin (x)
roots(y)
Star Strider
on 7 Aug 2021
There is nothing to fix.
Look at the results:
x=[-1000,1000]
x = 1×2
-1000 1000
y=sin (x)
y = 1×2
-0.8269 0.8269
roots(y)
ans = 1
so, plotting ‘y’ using polyval:
xv = linspace(-10,10);
pv = polyval(y, xv);
figure
plot(xv, pv)
grid
The reason is readily apparent! The ‘y’ vector corresponds to:
This is a linear relationship with one zero-crossing (root) at .
However,
x = -1000:1000;
y = sin (x);
roots(y)
ans =
1.1126 + 0.0000i
-0.7096 + 0.7046i
-0.7096 - 0.7046i
-0.7074 + 0.7068i
-0.7074 - 0.7068i
-0.7051 + 0.7091i
-0.7051 - 0.7091i
-0.7118 + 0.7024i
-0.7118 - 0.7024i
-0.7029 + 0.7113i
-0.7029 - 0.7113i
-0.7140 + 0.7001i
-0.7140 - 0.7001i
-0.7007 + 0.7135i
-0.7007 - 0.7135i
-0.6984 + 0.7157i
-0.6984 - 0.7157i
-0.7162 + 0.6979i
-0.7162 - 0.6979i
-0.6962 + 0.7179i
-0.6962 - 0.7179i
-0.7184 + 0.6957i
-0.7184 - 0.6957i
-0.7206 + 0.6934i
-0.7206 - 0.6934i
-0.6939 + 0.7200i
-0.6939 - 0.7200i
-0.7227 + 0.6911i
-0.7227 - 0.6911i
-0.6917 + 0.7222i
-0.6917 - 0.7222i
0.7086 + 0.7056i
0.7086 - 0.7056i
0.7041 + 0.7101i
0.7041 - 0.7101i
0.7064 + 0.7078i
0.7064 - 0.7078i
0.7108 + 0.7034i
0.7108 - 0.7034i
0.7019 + 0.7123i
0.7019 - 0.7123i
0.7130 + 0.7012i
0.7130 - 0.7012i
0.6997 + 0.7145i
0.6997 - 0.7145i
0.7152 + 0.6989i
0.7152 - 0.6989i
0.6974 + 0.7167i
0.6974 - 0.7167i
0.7174 + 0.6967i
0.7174 - 0.6967i
0.6952 + 0.7189i
0.6952 - 0.7189i
0.7196 + 0.6944i
0.7196 - 0.6944i
0.6929 + 0.7210i
0.6929 - 0.7210i
-0.6894 + 0.7244i
-0.6894 - 0.7244i
0.7218 + 0.6922i
0.7218 - 0.6922i
0.6906 + 0.7232i
0.6906 - 0.7232i
0.7239 + 0.6899i
0.7239 - 0.6899i
0.6884 + 0.7254i
0.6884 - 0.7254i
0.7261 + 0.6876i
0.7261 - 0.6876i
-0.7249 + 0.6889i
-0.7249 - 0.6889i
0.6861 + 0.7275i
0.6861 - 0.7275i
0.7282 + 0.6853i
0.7282 - 0.6853i
0.6838 + 0.7297i
0.6838 - 0.7297i
0.7304 + 0.6830i
0.7304 - 0.6830i
0.6815 + 0.7318i
0.6815 - 0.7318i
0.7325 + 0.6807i
0.7325 - 0.6807i
0.6792 + 0.7340i
0.6792 - 0.7340i
-0.6871 + 0.7266i
-0.6871 - 0.7266i
0.7347 + 0.6784i
0.7347 - 0.6784i
-0.7292 + 0.6843i
-0.7292 - 0.6843i
-0.7271 + 0.6866i
-0.7271 - 0.6866i
-0.7314 + 0.6820i
-0.7314 - 0.6820i
-0.7335 + 0.6797i
-0.7335 - 0.6797i
-0.6848 + 0.7287i
-0.6848 - 0.7287i
0.6769 + 0.7361i
0.6769 - 0.7361i
0.7368 + 0.6761i
0.7368 - 0.6761i
-0.6825 + 0.7309i
-0.6825 - 0.7309i
0.6746 + 0.7382i
0.6746 - 0.7382i
0.7389 + 0.6738i
0.7389 - 0.6738i
-0.7356 + 0.6774i
-0.7356 - 0.6774i
-0.6802 + 0.7330i
-0.6802 - 0.7330i
-0.7377 + 0.6751i
-0.7377 - 0.6751i
0.6722 + 0.7403i
0.6722 - 0.7403i
0.7410 + 0.6715i
0.7410 - 0.6715i
-0.6779 + 0.7351i
-0.6779 - 0.7351i
-0.6756 + 0.7372i
-0.6756 - 0.7372i
0.6699 + 0.7424i
0.6699 - 0.7424i
0.7431 + 0.6691i
0.7431 - 0.6691i
-0.7399 + 0.6728i
-0.7399 - 0.6728i
-0.6733 + 0.7394i
-0.6733 - 0.7394i
-0.6710 + 0.7415i
-0.6710 - 0.7415i
0.6676 + 0.7445i
0.6676 - 0.7445i
0.7452 + 0.6668i
0.7452 - 0.6668i
0.6652 + 0.7466i
0.6652 - 0.7466i
-0.7420 + 0.6704i
-0.7420 - 0.6704i
-0.6686 + 0.7436i
-0.6686 - 0.7436i
0.6629 + 0.7487i
0.6629 - 0.7487i
0.7473 + 0.6645i
0.7473 - 0.6645i
0.6605 + 0.7508i
0.6605 - 0.7508i
0.7494 + 0.6621i
0.7494 - 0.6621i
0.7515 + 0.6598i
0.7515 - 0.6598i
0.6582 + 0.7529i
0.6582 - 0.7529i
-0.7441 + 0.6681i
-0.7441 - 0.6681i
-0.6663 + 0.7457i
-0.6663 - 0.7457i
-0.7462 + 0.6658i
-0.7462 - 0.6658i
-0.6640 + 0.7478i
-0.6640 - 0.7478i
-0.7483 + 0.6634i
-0.7483 - 0.6634i
-0.6616 + 0.7498i
-0.6616 - 0.7498i
-0.7503 + 0.6611i
-0.7503 - 0.6611i
-0.6593 + 0.7519i
-0.6593 - 0.7519i
0.7535 + 0.6574i
0.7535 - 0.6574i
0.6534 + 0.7570i
0.6534 - 0.7570i
0.6558 + 0.7549i
0.6558 - 0.7549i
0.7556 + 0.6550i
0.7556 - 0.6550i
-0.6569 + 0.7540i
-0.6569 - 0.7540i
-0.7524 + 0.6587i
-0.7524 - 0.6587i
0.6511 + 0.7590i
0.6511 - 0.7590i
0.7577 + 0.6526i
0.7577 - 0.6526i
-0.6545 + 0.7560i
-0.6545 - 0.7560i
-0.7545 + 0.6563i
-0.7545 - 0.6563i
0.6487 + 0.7611i
0.6487 - 0.7611i
0.7597 + 0.6503i
0.7597 - 0.6503i
-0.6521 + 0.7581i
-0.6521 - 0.7581i
-0.7565 + 0.6540i
-0.7565 - 0.6540i
-0.7586 + 0.6516i
-0.7586 - 0.6516i
0.6463 + 0.7631i
0.6463 - 0.7631i
0.7617 + 0.6479i
0.7617 - 0.6479i
-0.6498 + 0.7601i
-0.6498 - 0.7601i
-0.6474 + 0.7622i
-0.6474 - 0.7622i
-0.7606 + 0.6492i
-0.7606 - 0.6492i
-0.7627 + 0.6468i
-0.7627 - 0.6468i
0.6439 + 0.7651i
0.6439 - 0.7651i
0.7638 + 0.6455i
0.7638 - 0.6455i
-0.6450 + 0.7642i
-0.6450 - 0.7642i
0.6415 + 0.7671i
0.6415 - 0.7671i
-0.7647 + 0.6444i
-0.7647 - 0.6444i
0.7658 + 0.6431i
0.7658 - 0.6431i
-0.6426 + 0.7662i
-0.6426 - 0.7662i
0.6391 + 0.7692i
0.6391 - 0.7692i
0.7678 + 0.6407i
0.7678 - 0.6407i
0.6366 + 0.7712i
0.6366 - 0.7712i
-0.7667 + 0.6420i
-0.7667 - 0.6420i
-0.6402 + 0.7682i
-0.6402 - 0.7682i
0.7698 + 0.6383i
0.7698 - 0.6383i
0.6342 + 0.7732i
0.6342 - 0.7732i
-0.6377 + 0.7702i
-0.6377 - 0.7702i
-0.7687 + 0.6396i
-0.7687 - 0.6396i
0.7718 + 0.6358i
0.7718 - 0.6358i
0.6318 + 0.7751i
0.6318 - 0.7751i
0.6293 + 0.7771i
0.6293 - 0.7771i
0.7738 + 0.6334i
0.7738 - 0.6334i
0.7758 + 0.6310i
0.7758 - 0.6310i
-0.6353 + 0.7722i
-0.6353 - 0.7722i
-0.7707 + 0.6372i
-0.7707 - 0.6372i
-0.7727 + 0.6347i
-0.7727 - 0.6347i
-0.6329 + 0.7742i
-0.6329 - 0.7742i
-0.7747 + 0.6323i
-0.7747 - 0.6323i
-0.6305 + 0.7762i
-0.6305 - 0.7762i
-0.7767 + 0.6299i
-0.7767 - 0.6299i
-0.6280 + 0.7782i
-0.6280 - 0.7782i
0.6269 + 0.7791i
0.6269 - 0.7791i
0.7778 + 0.6285i
0.7778 - 0.6285i
-0.7787 + 0.6274i
-0.7787 - 0.6274i
0.6245 + 0.7811i
0.6245 - 0.7811i
-0.6256 + 0.7802i
-0.6256 - 0.7802i
-0.7806 + 0.6250i
-0.7806 - 0.6250i
0.7798 + 0.6261i
0.7798 - 0.6261i
-0.6231 + 0.7821i
-0.6231 - 0.7821i
-0.7826 + 0.6225i
-0.7826 - 0.6225i
0.6220 + 0.7830i
0.6220 - 0.7830i
0.7817 + 0.6236i
0.7817 - 0.6236i
0.7837 + 0.6212i
0.7837 - 0.6212i
-0.6207 + 0.7841i
-0.6207 - 0.7841i
0.6195 + 0.7850i
0.6195 - 0.7850i
-0.7845 + 0.6201i
-0.7845 - 0.6201i
0.7856 + 0.6187i
0.7856 - 0.6187i
-0.6182 + 0.7860i
-0.6182 - 0.7860i
-0.6157 + 0.7880i
-0.6157 - 0.7880i
-0.7865 + 0.6176i
-0.7865 - 0.6176i
-0.7884 + 0.6151i
-0.7884 - 0.6151i
0.6171 + 0.7869i
0.6171 - 0.7869i
0.7876 + 0.6162i
0.7876 - 0.6162i
-0.7903 + 0.6127i
-0.7903 - 0.6127i
-0.6132 + 0.7899i
-0.6132 - 0.7899i
0.6146 + 0.7888i
0.6146 - 0.7888i
-0.7923 + 0.6102i
-0.7923 - 0.6102i
-0.6108 + 0.7918i
-0.6108 - 0.7918i
0.7895 + 0.6138i
0.7895 - 0.6138i
-0.7942 + 0.6077i
-0.7942 - 0.6077i
-0.6083 + 0.7937i
-0.6083 - 0.7937i
0.6121 + 0.7908i
0.6121 - 0.7908i
0.7914 + 0.6113i
0.7914 - 0.6113i
0.7933 + 0.6088i
0.7933 - 0.6088i
0.6096 + 0.7927i
0.6096 - 0.7927i
-0.7961 + 0.6052i
-0.7961 - 0.6052i
-0.6058 + 0.7956i
-0.6058 - 0.7956i
0.7952 + 0.6063i
0.7952 - 0.6063i
-0.7980 + 0.6027i
-0.7980 - 0.6027i
-0.6033 + 0.7975i
-0.6033 - 0.7975i
0.7971 + 0.6038i
0.7971 - 0.6038i
0.6071 + 0.7946i
0.6071 - 0.7946i
-0.7999 + 0.6002i
-0.7999 - 0.6002i
0.7990 + 0.6013i
0.7990 - 0.6013i
0.6046 + 0.7965i
0.6046 - 0.7965i
-0.6008 + 0.7994i
-0.6008 - 0.7994i
0.6021 + 0.7984i
0.6021 - 0.7984i
0.8009 + 0.5988i
0.8009 - 0.5988i
-0.8017 + 0.5977i
-0.8017 - 0.5977i
0.5996 + 0.8003i
0.5996 - 0.8003i
-0.5983 + 0.8013i
-0.5983 - 0.8013i
-0.8036 + 0.5951i
-0.8036 - 0.5951i
0.8028 + 0.5963i
0.8028 - 0.5963i
0.5971 + 0.8022i
0.5971 - 0.8022i
-0.5957 + 0.8032i
-0.5957 - 0.8032i
0.8047 + 0.5937i
0.8047 - 0.5937i
0.5946 + 0.8040i
0.5946 - 0.8040i
-0.8055 + 0.5926i
-0.8055 - 0.5926i
-0.5932 + 0.8050i
-0.5932 - 0.8050i
0.8065 + 0.5912i
0.8065 - 0.5912i
0.5921 + 0.8059i
0.5921 - 0.8059i
-0.8073 + 0.5901i
-0.8073 - 0.5901i
-0.5907 + 0.8069i
-0.5907 - 0.8069i
0.5895 + 0.8078i
0.5895 - 0.8078i
-0.8092 + 0.5875i
-0.8092 - 0.5875i
0.8084 + 0.5887i
0.8084 - 0.5887i
0.5870 + 0.8096i
0.5870 - 0.8096i
-0.8110 + 0.5850i
-0.8110 - 0.5850i
-0.5881 + 0.8088i
-0.5881 - 0.8088i
0.8102 + 0.5861i
0.8102 - 0.5861i
0.5844 + 0.8114i
0.5844 - 0.8114i
-0.8129 + 0.5825i
-0.8129 - 0.5825i
-0.5856 + 0.8106i
-0.5856 - 0.8106i
0.8121 + 0.5836i
0.8121 - 0.5836i
0.5819 + 0.8133i
0.5819 - 0.8133i
0.8139 + 0.5810i
0.8139 - 0.5810i
0.5793 + 0.8151i
0.5793 - 0.8151i
0.8157 + 0.5785i
0.8157 - 0.5785i
-0.8147 + 0.5799i
-0.8147 - 0.5799i
-0.5831 + 0.8124i
-0.5831 - 0.8124i
0.5768 + 0.8169i
0.5768 - 0.8169i
0.5742 + 0.8187i
0.5742 - 0.8187i
0.8175 + 0.5759i
0.8175 - 0.5759i
0.8193 + 0.5733i
0.8193 - 0.5733i
0.8211 + 0.5708i
0.8211 - 0.5708i
-0.5805 + 0.8143i
-0.5805 - 0.8143i
-0.5779 + 0.8161i
-0.5779 - 0.8161i
-0.8165 + 0.5773i
-0.8165 - 0.5773i
0.5716 + 0.8205i
0.5716 - 0.8205i
-0.5754 + 0.8179i
-0.5754 - 0.8179i
-0.8183 + 0.5748i
-0.8183 - 0.5748i
-0.8201 + 0.5722i
-0.8201 - 0.5722i
0.5690 + 0.8223i
0.5690 - 0.8223i
-0.5728 + 0.8197i
-0.5728 - 0.8197i
-0.8219 + 0.5696i
-0.8219 - 0.5696i
-0.5702 + 0.8215i
-0.5702 - 0.8215i
-0.8237 + 0.5670i
-0.8237 - 0.5670i
0.8229 + 0.5682i
0.8229 - 0.5682i
0.5665 + 0.8241i
0.5665 - 0.8241i
-0.5676 + 0.8233i
-0.5676 - 0.8233i
-0.8255 + 0.5644i
-0.8255 - 0.5644i
0.5639 + 0.8259i
0.5639 - 0.8259i
0.8247 + 0.5656i
0.8247 - 0.5656i
-0.8272 + 0.5619i
-0.8272 - 0.5619i
0.5613 + 0.8276i
0.5613 - 0.8276i
0.8265 + 0.5630i
0.8265 - 0.5630i
-0.5651 + 0.8251i
-0.5651 - 0.8251i
0.5587 + 0.8294i
0.5587 - 0.8294i
-0.5625 + 0.8268i
-0.5625 - 0.8268i
0.8282 + 0.5604i
0.8282 - 0.5604i
-0.8290 + 0.5592i
-0.8290 - 0.5592i
0.8300 + 0.5578i
0.8300 - 0.5578i
-0.5599 + 0.8286i
-0.5599 - 0.8286i
-0.8308 + 0.5566i
-0.8308 - 0.5566i
0.8317 + 0.5552i
0.8317 - 0.5552i
-0.5573 + 0.8303i
-0.5573 - 0.8303i
0.5561 + 0.8311i
0.5561 - 0.8311i
-0.8325 + 0.5540i
-0.8325 - 0.5540i
0.8335 + 0.5526i
0.8335 - 0.5526i
-0.5546 + 0.8321i
-0.5546 - 0.8321i
0.5534 + 0.8329i
0.5534 - 0.8329i
0.8352 + 0.5499i
0.8352 - 0.5499i
-0.8342 + 0.5514i
-0.8342 - 0.5514i
-0.5520 + 0.8338i
-0.5520 - 0.8338i
0.5508 + 0.8346i
0.5508 - 0.8346i
-0.8360 + 0.5488i
-0.8360 - 0.5488i
-0.5494 + 0.8356i
-0.5494 - 0.8356i
0.8369 + 0.5473i
0.8369 - 0.5473i
-0.5468 + 0.8373i
-0.5468 - 0.8373i
-0.8377 + 0.5462i
-0.8377 - 0.5462i
0.5482 + 0.8363i
0.5482 - 0.8363i
0.8386 + 0.5447i
0.8386 - 0.5447i
0.5456 + 0.8381i
0.5456 - 0.8381i
-0.5442 + 0.8390i
-0.5442 - 0.8390i
-0.8394 + 0.5435i
-0.8394 - 0.5435i
0.8403 + 0.5421i
0.8403 - 0.5421i
-0.5415 + 0.8407i
-0.5415 - 0.8407i
-0.8411 + 0.5409i
-0.8411 - 0.5409i
0.5429 + 0.8398i
0.5429 - 0.8398i
-0.5389 + 0.8424i
-0.5389 - 0.8424i
-0.8428 + 0.5383i
-0.8428 - 0.5383i
0.8420 + 0.5394i
0.8420 - 0.5394i
0.8437 + 0.5368i
0.8437 - 0.5368i
0.5377 + 0.8432i
0.5377 - 0.8432i
-0.5362 + 0.8441i
-0.5362 - 0.8441i
0.8454 + 0.5341i
0.8454 - 0.5341i
0.5350 + 0.8448i
0.5350 - 0.8448i
-0.5336 + 0.8458i
-0.5336 - 0.8458i
-0.8445 + 0.5356i
-0.8445 - 0.5356i
-0.8461 + 0.5329i
-0.8461 - 0.5329i
0.8471 + 0.5314i
0.8471 - 0.5314i
0.5324 + 0.8465i
0.5324 - 0.8465i
-0.5309 + 0.8474i
-0.5309 - 0.8474i
-0.8478 + 0.5303i
-0.8478 - 0.5303i
0.5297 + 0.8482i
0.5297 - 0.8482i
-0.5283 + 0.8491i
-0.5283 - 0.8491i
0.8488 + 0.5288i
0.8488 - 0.5288i
-0.8495 + 0.5276i
-0.8495 - 0.5276i
0.5270 + 0.8499i
0.5270 - 0.8499i
-0.5256 + 0.8507i
-0.5256 - 0.8507i
-0.8511 + 0.5250i
-0.8511 - 0.5250i
-0.5229 + 0.8524i
-0.5229 - 0.8524i
-0.8528 + 0.5223i
-0.8528 - 0.5223i
-0.5202 + 0.8540i
-0.5202 - 0.8540i
-0.5175 + 0.8557i
-0.5175 - 0.8557i
0.8504 + 0.5261i
0.8504 - 0.5261i
0.5244 + 0.8515i
0.5244 - 0.8515i
0.8521 + 0.5234i
0.8521 - 0.5234i
0.5217 + 0.8531i
0.5217 - 0.8531i
-0.8544 + 0.5196i
-0.8544 - 0.5196i
0.8537 + 0.5208i
0.8537 - 0.5208i
0.5190 + 0.8548i
0.5190 - 0.8548i
-0.8560 + 0.5169i
-0.8560 - 0.5169i
0.8553 + 0.5181i
0.8553 - 0.5181i
0.8570 + 0.5154i
0.8570 - 0.5154i
0.5163 + 0.8564i
0.5163 - 0.8564i
-0.5149 + 0.8573i
-0.5149 - 0.8573i
-0.8577 + 0.5142i
-0.8577 - 0.5142i
0.8586 + 0.5127i
0.8586 - 0.5127i
0.5136 + 0.8580i
0.5136 - 0.8580i
-0.5122 + 0.8589i
-0.5122 - 0.8589i
-0.8593 + 0.5115i
-0.8593 - 0.5115i
0.8602 + 0.5100i
0.8602 - 0.5100i
0.5109 + 0.8596i
0.5109 - 0.8596i
-0.5095 + 0.8605i
-0.5095 - 0.8605i
-0.8609 + 0.5088i
-0.8609 - 0.5088i
0.8618 + 0.5073i
0.8618 - 0.5073i
0.5082 + 0.8612i
0.5082 - 0.8612i
-0.5068 + 0.8621i
-0.5068 - 0.8621i
0.5055 + 0.8628i
0.5055 - 0.8628i
0.8634 + 0.5046i
0.8634 - 0.5046i
-0.8625 + 0.5061i
-0.8625 - 0.5061i
-0.5040 + 0.8637i
-0.5040 - 0.8637i
-0.8640 + 0.5034i
-0.8640 - 0.5034i
0.5028 + 0.8644i
0.5028 - 0.8644i
0.8649 + 0.5019i
0.8649 - 0.5019i
0.8665 + 0.4991i
0.8665 - 0.4991i
0.5001 + 0.8660i
0.5001 - 0.8660i
-0.5013 + 0.8653i
-0.5013 - 0.8653i
-0.8656 + 0.5007i
-0.8656 - 0.5007i
-0.8672 + 0.4980i
-0.8672 - 0.4980i
-0.4986 + 0.8668i
-0.4986 - 0.8668i
-0.8688 + 0.4952i
-0.8688 - 0.4952i
-0.4959 + 0.8684i
-0.4959 - 0.8684i
-0.4932 + 0.8699i
-0.4932 - 0.8699i
-0.4904 + 0.8715i
-0.4904 - 0.8715i
0.4974 + 0.8675i
0.4974 - 0.8675i
0.8681 + 0.4964i
0.8681 - 0.4964i
-0.8703 + 0.4925i
-0.8703 - 0.4925i
0.4946 + 0.8691i
0.4946 - 0.8691i
0.8696 + 0.4937i
0.8696 - 0.4937i
0.8712 + 0.4910i
0.8712 - 0.4910i
0.4919 + 0.8707i
0.4919 - 0.8707i
0.8727 + 0.4882i
0.8727 - 0.4882i
0.4892 + 0.8722i
0.4892 - 0.8722i
0.8742 + 0.4855i
0.8742 - 0.4855i
-0.8718 + 0.4898i
-0.8718 - 0.4898i
0.4864 + 0.8737i
0.4864 - 0.8737i
-0.4877 + 0.8730i
-0.4877 - 0.8730i
-0.8734 + 0.4870i
-0.8734 - 0.4870i
0.4837 + 0.8752i
0.4837 - 0.8752i
0.8758 + 0.4827i
0.8758 - 0.4827i
-0.4849 + 0.8745i
-0.4849 - 0.8745i
-0.4822 + 0.8761i
-0.4822 - 0.8761i
-0.8749 + 0.4843i
-0.8749 - 0.4843i
-0.4794 + 0.8776i
-0.4794 - 0.8776i
-0.8764 + 0.4815i
-0.8764 - 0.4815i
0.8773 + 0.4800i
0.8773 - 0.4800i
0.4809 + 0.8768i
0.4809 - 0.8768i
-0.4767 + 0.8791i
-0.4767 - 0.8791i
-0.8779 + 0.4788i
-0.8779 - 0.4788i
0.4782 + 0.8783i
0.4782 - 0.8783i
0.8788 + 0.4772i
0.8788 - 0.4772i
0.4754 + 0.8798i
0.4754 - 0.8798i
0.8803 + 0.4745i
0.8803 - 0.4745i
-0.8794 + 0.4760i
-0.8794 - 0.4760i
0.4726 + 0.8813i
0.4726 - 0.8813i
0.8818 + 0.4717i
0.8818 - 0.4717i
-0.4739 + 0.8806i
-0.4739 - 0.8806i
0.8832 + 0.4689i
0.8832 - 0.4689i
0.4699 + 0.8827i
0.4699 - 0.8827i
-0.8809 + 0.4733i
-0.8809 - 0.4733i
-0.4712 + 0.8821i
-0.4712 - 0.8821i
0.8847 + 0.4661i
0.8847 - 0.4661i
0.4671 + 0.8842i
0.4671 - 0.8842i
0.8862 + 0.4634i
0.8862 - 0.4634i
0.8876 + 0.4606i
0.8876 - 0.4606i
0.4643 + 0.8857i
0.4643 - 0.8857i
-0.4684 + 0.8835i
-0.4684 - 0.8835i
-0.8824 + 0.4705i
-0.8824 - 0.4705i
-0.8839 + 0.4677i
-0.8839 - 0.4677i
0.4615 + 0.8871i
0.4615 - 0.8871i
-0.4656 + 0.8850i
-0.4656 - 0.8850i
-0.8853 + 0.4649i
-0.8853 - 0.4649i
0.4587 + 0.8886i
0.4587 - 0.8886i
-0.4628 + 0.8865i
-0.4628 - 0.8865i
-0.4600 + 0.8879i
-0.4600 - 0.8879i
-0.8868 + 0.4622i
-0.8868 - 0.4622i
-0.8882 + 0.4594i
-0.8882 - 0.4594i
0.8891 + 0.4578i
0.8891 - 0.4578i
0.4560 + 0.8900i
0.4560 - 0.8900i
0.8905 + 0.4550i
0.8905 - 0.4550i
-0.4572 + 0.8893i
-0.4572 - 0.8893i
-0.8897 + 0.4566i
-0.8897 - 0.4566i
0.8919 + 0.4522i
0.8919 - 0.4522i
0.8933 + 0.4494i
0.8933 - 0.4494i
0.4532 + 0.8914i
0.4532 - 0.8914i
0.8947 + 0.4466i
0.8947 - 0.4466i
-0.4545 + 0.8908i
-0.4545 - 0.8908i
-0.8911 + 0.4538i
-0.8911 - 0.4538i
0.4504 + 0.8928i
0.4504 - 0.8928i
-0.4517 + 0.8922i
-0.4517 - 0.8922i
-0.8925 + 0.4510i
-0.8925 - 0.4510i
0.4476 + 0.8943i
0.4476 - 0.8943i
-0.4488 + 0.8936i
-0.4488 - 0.8936i
0.4447 + 0.8957i
0.4447 - 0.8957i
-0.8939 + 0.4482i
-0.8939 - 0.4482i
-0.8953 + 0.4454i
-0.8953 - 0.4454i
-0.4460 + 0.8950i
-0.4460 - 0.8950i
0.4419 + 0.8971i
0.4419 - 0.8971i
0.8961 + 0.4438i
0.8961 - 0.4438i
-0.8967 + 0.4426i
-0.8967 - 0.4426i
-0.4432 + 0.8964i
-0.4432 - 0.8964i
-0.4404 + 0.8978i
-0.4404 - 0.8978i
0.4391 + 0.8984i
0.4391 - 0.8984i
-0.8981 + 0.4397i
-0.8981 - 0.4397i
-0.4376 + 0.8992i
-0.4376 - 0.8992i
0.4363 + 0.8998i
0.4363 - 0.8998i
-0.8995 + 0.4369i
-0.8995 - 0.4369i
0.8975 + 0.4409i
0.8975 - 0.4409i
-0.4348 + 0.9005i
-0.4348 - 0.9005i
0.4335 + 0.9012i
0.4335 - 0.9012i
0.8989 + 0.4381i
0.8989 - 0.4381i
-0.9009 + 0.4341i
-0.9009 - 0.4341i
0.9003 + 0.4353i
0.9003 - 0.4353i
0.4306 + 0.9025i
0.4306 - 0.9025i
-0.9022 + 0.4313i
-0.9022 - 0.4313i
0.9017 + 0.4325i
0.9017 - 0.4325i
-0.4319 + 0.9019i
-0.4319 - 0.9019i
0.9030 + 0.4296i
0.9030 - 0.4296i
-0.4291 + 0.9033i
-0.4291 - 0.9033i
0.4278 + 0.9039i
0.4278 - 0.9039i
0.9044 + 0.4268i
0.9044 - 0.4268i
-0.9036 + 0.4284i
-0.9036 - 0.4284i
-0.4263 + 0.9046i
-0.4263 - 0.9046i
-0.4234 + 0.9059i
-0.4234 - 0.9059i
0.4249 + 0.9052i
0.4249 - 0.9052i
-0.4206 + 0.9073i
-0.4206 - 0.9073i
0.4221 + 0.9065i
0.4221 - 0.9065i
-0.9049 + 0.4256i
-0.9049 - 0.4256i
0.9057 + 0.4239i
0.9057 - 0.4239i
-0.9062 + 0.4227i
-0.9062 - 0.4227i
0.9070 + 0.4211i
0.9070 - 0.4211i
0.4193 + 0.9079i
0.4193 - 0.9079i
-0.9076 + 0.4199i
-0.9076 - 0.4199i
0.9083 + 0.4182i
0.9083 - 0.4182i
-0.9089 + 0.4170i
-0.9089 - 0.4170i
-0.4177 + 0.9086i
-0.4177 - 0.9086i
0.4164 + 0.9092i
0.4164 - 0.9092i
0.9096 + 0.4154i
0.9096 - 0.4154i
-0.4149 + 0.9099i
-0.4149 - 0.9099i
-0.9102 + 0.4142i
-0.9102 - 0.4142i
0.9109 + 0.4125i
0.9109 - 0.4125i
0.4135 + 0.9105i
0.4135 - 0.9105i
-0.4120 + 0.9112i
-0.4120 - 0.9112i
-0.9115 + 0.4113i
-0.9115 - 0.4113i
0.4107 + 0.9118i
0.4107 - 0.9118i
-0.4091 + 0.9125i
-0.4091 - 0.9125i
-0.9128 + 0.4085i
-0.9128 - 0.4085i
0.4078 + 0.9131i
0.4078 - 0.9131i
0.9122 + 0.4097i
0.9122 - 0.4097i
-0.4063 + 0.9138i
-0.4063 - 0.9138i
-0.9141 + 0.4056i
-0.9141 - 0.4056i
0.9135 + 0.4068i
0.9135 - 0.4068i
0.4049 + 0.9143i
0.4049 - 0.9143i
-0.4034 + 0.9150i
-0.4034 - 0.9150i
0.4021 + 0.9156i
0.4021 - 0.9156i
0.9148 + 0.4039i
0.9148 - 0.4039i
-0.9153 + 0.4027i
-0.9153 - 0.4027i
0.9161 + 0.4011i
0.9161 - 0.4011i
-0.4005 + 0.9163i
-0.4005 - 0.9163i
-0.9166 + 0.3999i
-0.9166 - 0.3999i
-0.9178 + 0.3970i
-0.9178 - 0.3970i
0.3992 + 0.9169i
0.3992 - 0.9169i
0.9173 + 0.3982i
0.9173 - 0.3982i
-0.3976 + 0.9175i
-0.3976 - 0.9175i
-0.9191 + 0.3941i
-0.9191 - 0.3941i
0.9186 + 0.3953i
0.9186 - 0.3953i
0.3963 + 0.9181i
0.3963 - 0.9181i
-0.9203 + 0.3912i
-0.9203 - 0.3912i
0.9198 + 0.3924i
0.9198 - 0.3924i
-0.3948 + 0.9188i
-0.3948 - 0.9188i
0.3934 + 0.9194i
0.3934 - 0.9194i
-0.3919 + 0.9200i
-0.3919 - 0.9200i
-0.9215 + 0.3883i
-0.9215 - 0.3883i
0.3905 + 0.9206i
0.3905 - 0.9206i
0.9210 + 0.3895i
0.9210 - 0.3895i
-0.3890 + 0.9212i
-0.3890 - 0.9212i
0.9222 + 0.3866i
0.9222 - 0.3866i
-0.9227 + 0.3854i
-0.9227 - 0.3854i
0.3876 + 0.9218i
0.3876 - 0.9218i
-0.3861 + 0.9225i
-0.3861 - 0.9225i
0.3848 + 0.9230i
0.3848 - 0.9230i
-0.9240 + 0.3825i
-0.9240 - 0.3825i
0.9235 + 0.3837i
0.9235 - 0.3837i
-0.3832 + 0.9237i
-0.3832 - 0.9237i
0.3819 + 0.9242i
0.3819 - 0.9242i
-0.9251 + 0.3796i
-0.9251 - 0.3796i
-0.3803 + 0.9249i
-0.3803 - 0.9249i
0.9247 + 0.3808i
0.9247 - 0.3808i
-0.9263 + 0.3767i
-0.9263 - 0.3767i
-0.9275 + 0.3738i
-0.9275 - 0.3738i
-0.9287 + 0.3709i
-0.9287 - 0.3709i
0.9258 + 0.3779i
0.9258 - 0.3779i
0.3789 + 0.9254i
0.3789 - 0.9254i
0.9270 + 0.3750i
0.9270 - 0.3750i
-0.3774 + 0.9261i
-0.3774 - 0.9261i
0.3760 + 0.9266i
0.3760 - 0.9266i
-0.3745 + 0.9272i
-0.3745 - 0.9272i
0.9282 + 0.3721i
0.9282 - 0.3721i
0.3731 + 0.9278i
0.3731 - 0.9278i
-0.3716 + 0.9284i
-0.3716 - 0.9284i
0.9294 + 0.3692i
0.9294 - 0.3692i
-0.3686 + 0.9296i
-0.3686 - 0.9296i
0.3702 + 0.9289i
0.3702 - 0.9289i
0.3673 + 0.9301i
0.3673 - 0.9301i
-0.9298 + 0.3680i
-0.9298 - 0.3680i
0.9305 + 0.3662i
0.9305 - 0.3662i
-0.3657 + 0.9307i
-0.3657 - 0.9307i
-0.9310 + 0.3650i
-0.9310 - 0.3650i
0.3644 + 0.9313i
0.3644 - 0.9313i
0.9317 + 0.3633i
0.9317 - 0.3633i
-0.9321 + 0.3621i
-0.9321 - 0.3621i
0.3614 + 0.9324i
0.3614 - 0.9324i
0.9328 + 0.3604i
0.9328 - 0.3604i
0.3585 + 0.9335i
0.3585 - 0.9335i
-0.9333 + 0.3592i
-0.9333 - 0.3592i
0.9339 + 0.3574i
0.9339 - 0.3574i
-0.3628 + 0.9319i
-0.3628 - 0.9319i
-0.3599 + 0.9330i
-0.3599 - 0.9330i
0.3556 + 0.9346i
0.3556 - 0.9346i
-0.9344 + 0.3563i
-0.9344 - 0.3563i
0.9351 + 0.3545i
0.9351 - 0.3545i
-0.3569 + 0.9341i
-0.3569 - 0.9341i
-0.9355 + 0.3533i
-0.9355 - 0.3533i
-0.3540 + 0.9352i
-0.3540 - 0.9352i
0.9362 + 0.3516i
0.9362 - 0.3516i
0.3526 + 0.9358i
0.3526 - 0.9358i
-0.3511 + 0.9364i
-0.3511 - 0.9364i
0.3497 + 0.9369i
0.3497 - 0.9369i
0.9373 + 0.3486i
0.9373 - 0.3486i
-0.9366 + 0.3504i
-0.9366 - 0.3504i
-0.3481 + 0.9374i
-0.3481 - 0.9374i
0.3468 + 0.9380i
0.3468 - 0.9380i
0.9384 + 0.3457i
0.9384 - 0.3457i
-0.9377 + 0.3474i
-0.9377 - 0.3474i
0.3438 + 0.9390i
0.3438 - 0.9390i
0.9394 + 0.3427i
0.9394 - 0.3427i
-0.9388 + 0.3445i
-0.9388 - 0.3445i
-0.3452 + 0.9385i
-0.3452 - 0.9385i
-0.3422 + 0.9396i
-0.3422 - 0.9396i
0.9405 + 0.3398i
0.9405 - 0.3398i
0.3409 + 0.9401i
0.3409 - 0.9401i
-0.9399 + 0.3415i
-0.9399 - 0.3415i
-0.3393 + 0.9407i
-0.3393 - 0.9407i
0.3379 + 0.9412i
0.3379 - 0.9412i
-0.9409 + 0.3386i
-0.9409 - 0.3386i
0.9416 + 0.3368i
0.9416 - 0.3368i
-0.3363 + 0.9417i
-0.3363 - 0.9417i
0.9426 + 0.3339i
0.9426 - 0.3339i
0.3350 + 0.9422i
0.3350 - 0.9422i
-0.9420 + 0.3356i
-0.9420 - 0.3356i
-0.3334 + 0.9428i
-0.3334 - 0.9428i
0.9437 + 0.3309i
0.9437 - 0.3309i
-0.3304 + 0.9438i
-0.3304 - 0.9438i
-0.9430 + 0.3327i
-0.9430 - 0.3327i
0.9447 + 0.3279i
0.9447 - 0.3279i
0.9457 + 0.3250i
0.9457 - 0.3250i
0.9467 + 0.3220i
0.9467 - 0.3220i
0.3320 + 0.9433i
0.3320 - 0.9433i
0.3290 + 0.9443i
0.3290 - 0.9443i
0.3261 + 0.9453i
0.3261 - 0.9453i
-0.3274 + 0.9449i
-0.3274 - 0.9449i
-0.9441 + 0.3297i
-0.9441 - 0.3297i
-0.9451 + 0.3267i
-0.9451 - 0.3267i
-0.3245 + 0.9459i
-0.3245 - 0.9459i
0.3231 + 0.9464i
0.3231 - 0.9464i
-0.9461 + 0.3238i
-0.9461 - 0.3238i
-0.3215 + 0.9469i
-0.3215 - 0.9469i
0.3201 + 0.9474i
0.3201 - 0.9474i
-0.3185 + 0.9479i
-0.3185 - 0.9479i
-0.9471 + 0.3208i
-0.9471 - 0.3208i
-0.9482 + 0.3178i
-0.9482 - 0.3178i
0.9478 + 0.3190i
0.9478 - 0.3190i
0.9488 + 0.3160i
0.9488 - 0.3160i
0.3171 + 0.9484i
0.3171 - 0.9484i
-0.3155 + 0.9489i
-0.3155 - 0.9489i
-0.9491 + 0.3148i
-0.9491 - 0.3148i
0.9497 + 0.3130i
0.9497 - 0.3130i
0.9507 + 0.3101i
0.9507 - 0.3101i
0.9517 + 0.3071i
0.9517 - 0.3071i
0.3142 + 0.9494i
0.3142 - 0.9494i
0.3112 + 0.9504i
0.3112 - 0.9504i
-0.3126 + 0.9499i
-0.3126 - 0.9499i
0.3082 + 0.9513i
0.3082 - 0.9513i
-0.9501 + 0.3119i
-0.9501 - 0.3119i
-0.3096 + 0.9509i
-0.3096 - 0.9509i
-0.9511 + 0.3089i
-0.9511 - 0.3089i
0.3052 + 0.9523i
0.3052 - 0.9523i
-0.3066 + 0.9518i
-0.3066 - 0.9518i
-0.9521 + 0.3059i
-0.9521 - 0.3059i
-0.3036 + 0.9528i
-0.3036 - 0.9528i
0.3022 + 0.9532i
0.3022 - 0.9532i
-0.9530 + 0.3029i
-0.9530 - 0.3029i
-0.3006 + 0.9537i
-0.3006 - 0.9537i
-0.9540 + 0.2999i
-0.9540 - 0.2999i
0.9526 + 0.3041i
0.9526 - 0.3041i
-0.9549 + 0.2969i
-0.9549 - 0.2969i
0.2992 + 0.9542i
0.2992 - 0.9542i
-0.2976 + 0.9547i
-0.2976 - 0.9547i
0.9536 + 0.3011i
0.9536 - 0.3011i
-0.9558 + 0.2939i
-0.9558 - 0.2939i
-0.9568 + 0.2909i
-0.9568 - 0.2909i
0.2962 + 0.9551i
0.2962 - 0.9551i
-0.2946 + 0.9556i
-0.2946 - 0.9556i
0.2932 + 0.9560i
0.2932 - 0.9560i
-0.2916 + 0.9565i
-0.2916 - 0.9565i
0.9545 + 0.2981i
0.9545 - 0.2981i
-0.9577 + 0.2879i
-0.9577 - 0.2879i
0.9555 + 0.2951i
0.9555 - 0.2951i
0.2902 + 0.9570i
0.2902 - 0.9570i
-0.2886 + 0.9574i
-0.2886 - 0.9574i
0.9564 + 0.2921i
0.9564 - 0.2921i
-0.2856 + 0.9584i
-0.2856 - 0.9584i
0.2872 + 0.9579i
0.2872 - 0.9579i
0.9573 + 0.2891i
0.9573 - 0.2891i
0.9582 + 0.2861i
0.9582 - 0.2861i
-0.9586 + 0.2849i
-0.9586 - 0.2849i
-0.2826 + 0.9592i
-0.2826 - 0.9592i
0.2842 + 0.9588i
0.2842 - 0.9588i
-0.9595 + 0.2819i
-0.9595 - 0.2819i
0.9591 + 0.2830i
0.9591 - 0.2830i
0.2812 + 0.9597i
0.2812 - 0.9597i
-0.9603 + 0.2789i
-0.9603 - 0.2789i
-0.9612 + 0.2758i
-0.9612 - 0.2758i
-0.2796 + 0.9601i
-0.2796 - 0.9601i
-0.2766 + 0.9610i
-0.2766 - 0.9610i
0.2782 + 0.9605i
0.2782 - 0.9605i
-0.9621 + 0.2728i
-0.9621 - 0.2728i
-0.2735 + 0.9619i
-0.2735 - 0.9619i
0.2752 + 0.9614i
0.2752 - 0.9614i
0.2721 + 0.9623i
0.2721 - 0.9623i
-0.2705 + 0.9627i
-0.2705 - 0.9627i
0.9600 + 0.2800i
0.9600 - 0.2800i
0.9609 + 0.2770i
0.9609 - 0.2770i
0.9617 + 0.2740i
0.9617 - 0.2740i
0.9634 + 0.2679i
0.9634 - 0.2679i
0.9626 + 0.2710i
0.9626 - 0.2710i
0.9651 + 0.2619i
0.9651 - 0.2619i
0.9643 + 0.2649i
0.9643 - 0.2649i
0.9659 + 0.2588i
0.9659 - 0.2588i
-0.2675 + 0.9636i
-0.2675 - 0.9636i
0.2691 + 0.9631i
0.2691 - 0.9631i
-0.9629 + 0.2698i
-0.9629 - 0.2698i
0.2661 + 0.9640i
0.2661 - 0.9640i
-0.9638 + 0.2668i
-0.9638 - 0.2668i
0.9667 + 0.2558i
0.9667 - 0.2558i
0.9675 + 0.2527i
0.9675 - 0.2527i
-0.2645 + 0.9644i
-0.2645 - 0.9644i
-0.2614 + 0.9652i
-0.2614 - 0.9652i
-0.9646 + 0.2638i
-0.9646 - 0.2638i
-0.2584 + 0.9660i
-0.2584 - 0.9660i
0.2631 + 0.9648i
0.2631 - 0.9648i
-0.9654 + 0.2607i
-0.9654 - 0.2607i
0.2600 + 0.9656i
0.2600 - 0.9656i
-0.9662 + 0.2577i
-0.9662 - 0.2577i
0.2570 + 0.9664i
0.2570 - 0.9664i
0.9683 + 0.2497i
0.9683 - 0.2497i
0.9691 + 0.2467i
0.9691 - 0.2467i
0.9699 + 0.2436i
0.9699 - 0.2436i
0.9706 + 0.2406i
0.9706 - 0.2406i
0.9714 + 0.2375i
0.9714 - 0.2375i
0.9721 + 0.2344i
0.9721 - 0.2344i
0.9729 + 0.2314i
0.9729 - 0.2314i
0.9736 + 0.2283i
0.9736 - 0.2283i
0.2540 + 0.9672i
0.2540 - 0.9672i
-0.2554 + 0.9668i
-0.2554 - 0.9668i
-0.9670 + 0.2547i
-0.9670 - 0.2547i
0.9743 + 0.2253i
0.9743 - 0.2253i
-0.9678 + 0.2516i
-0.9678 - 0.2516i
0.2509 + 0.9680i
0.2509 - 0.9680i
-0.9686 + 0.2486i
-0.9686 - 0.2486i
0.2479 + 0.9688i
0.2479 - 0.9688i
-0.2523 + 0.9676i
-0.2523 - 0.9676i
-0.2493 + 0.9684i
-0.2493 - 0.9684i
0.2448 + 0.9696i
0.2448 - 0.9696i
-0.9694 + 0.2455i
-0.9694 - 0.2455i
-0.2462 + 0.9692i
-0.2462 - 0.9692i
-0.2432 + 0.9700i
-0.2432 - 0.9700i
0.9750 + 0.2222i
0.9750 - 0.2222i
-0.9702 + 0.2425i
-0.9702 - 0.2425i
0.9757 + 0.2191i
0.9757 - 0.2191i
0.9764 + 0.2161i
0.9764 - 0.2161i
0.9771 + 0.2130i
0.9771 - 0.2130i
0.9777 + 0.2099i
0.9777 - 0.2099i
0.9784 + 0.2068i
0.9784 - 0.2068i
0.9790 + 0.2038i
0.9790 - 0.2038i
0.9797 + 0.2007i
0.9797 - 0.2007i
0.2418 + 0.9703i
0.2418 - 0.9703i
-0.9709 + 0.2394i
-0.9709 - 0.2394i
-0.2402 + 0.9707i
-0.2402 - 0.9707i
0.2387 + 0.9711i
0.2387 - 0.9711i
0.9803 + 0.1976i
0.9803 - 0.1976i
-0.9717 + 0.2364i
-0.9717 - 0.2364i
-0.9724 + 0.2333i
-0.9724 - 0.2333i
-0.9731 + 0.2303i
-0.9731 - 0.2303i
-0.2371 + 0.9715i
-0.2371 - 0.9715i
0.2357 + 0.9718i
0.2357 - 0.9718i
-0.2341 + 0.9722i
-0.2341 - 0.9722i
0.2326 + 0.9726i
0.2326 - 0.9726i
-0.2310 + 0.9730i
-0.2310 - 0.9730i
0.2296 + 0.9733i
0.2296 - 0.9733i
-0.2279 + 0.9737i
-0.2279 - 0.9737i
0.9809 + 0.1945i
0.9809 - 0.1945i
0.9815 + 0.1914i
0.9815 - 0.1914i
0.9821 + 0.1883i
0.9821 - 0.1883i
0.9827 + 0.1852i
0.9827 - 0.1852i
0.9833 + 0.1821i
0.9833 - 0.1821i
0.9838 + 0.1790i
0.9838 - 0.1790i
0.9844 + 0.1759i
0.9844 - 0.1759i
0.9849 + 0.1728i
0.9849 - 0.1728i
0.2265 + 0.9740i
0.2265 - 0.9740i
-0.9738 + 0.2272i
-0.9738 - 0.2272i
-0.2249 + 0.9744i
-0.2249 - 0.9744i
-0.9746 + 0.2242i
-0.9746 - 0.2242i
0.9855 + 0.1697i
0.9855 - 0.1697i
-0.9752 + 0.2211i
-0.9752 - 0.2211i
-0.9759 + 0.2180i
-0.9759 - 0.2180i
-0.9766 + 0.2150i
-0.9766 - 0.2150i
-0.2218 + 0.9751i
-0.2218 - 0.9751i
0.2235 + 0.9747i
0.2235 - 0.9747i
-0.2188 + 0.9758i
-0.2188 - 0.9758i
0.2204 + 0.9754i
0.2204 - 0.9754i
-0.2157 + 0.9765i
-0.2157 - 0.9765i
0.2173 + 0.9761i
0.2173 - 0.9761i
0.2143 + 0.9768i
0.2143 - 0.9768i
0.9860 + 0.1666i
0.9860 - 0.1666i
0.9865 + 0.1635i
0.9865 - 0.1635i
0.9870 + 0.1604i
0.9870 - 0.1604i
0.9875 + 0.1573i
0.9875 - 0.1573i
0.9880 + 0.1542i
0.9880 - 0.1542i
0.9885 + 0.1511i
0.9885 - 0.1511i
0.9895 + 0.1449i
0.9895 - 0.1449i
0.9890 + 0.1480i
0.9890 - 0.1480i
-0.9773 + 0.2119i
-0.9773 - 0.2119i
-0.2126 + 0.9771i
-0.2126 - 0.9771i
0.9899 + 0.1417i
0.9899 - 0.1417i
-0.9780 + 0.2088i
-0.9780 - 0.2088i
-0.9786 + 0.2058i
-0.9786 - 0.2058i
-0.9792 + 0.2027i
-0.9792 - 0.2027i
-0.2096 + 0.9778i
-0.2096 - 0.9778i
0.2112 + 0.9774i
0.2112 - 0.9774i
-0.2065 + 0.9784i
-0.2065 - 0.9784i
0.2081 + 0.9781i
0.2081 - 0.9781i
0.2051 + 0.9788i
0.2051 - 0.9788i
-0.2034 + 0.9791i
-0.2034 - 0.9791i
0.2020 + 0.9794i
0.2020 - 0.9794i
0.9903 + 0.1386i
0.9903 - 0.1386i
0.9908 + 0.1355i
0.9908 - 0.1355i
0.9912 + 0.1324i
0.9912 - 0.1324i
0.9916 + 0.1293i
0.9916 - 0.1293i
0.9920 + 0.1261i
0.9920 - 0.1261i
0.9924 + 0.1230i
0.9924 - 0.1230i
0.9928 + 0.1199i
0.9928 - 0.1199i
-0.9799 + 0.1996i
-0.9799 - 0.1996i
0.1989 + 0.9800i
0.1989 - 0.9800i
-0.2003 + 0.9797i
-0.2003 - 0.9797i
0.1958 + 0.9806i
0.1958 - 0.9806i
0.9932 + 0.1167i
0.9932 - 0.1167i
-0.9805 + 0.1965i
-0.9805 - 0.1965i
-0.9811 + 0.1935i
-0.9811 - 0.1935i
-0.9817 + 0.1904i
-0.9817 - 0.1904i
-0.1973 + 0.9804i
-0.1973 - 0.9804i
-0.1942 + 0.9810i
-0.1942 - 0.9810i
-0.1911 + 0.9816i
-0.1911 - 0.9816i
0.1927 + 0.9812i
0.1927 - 0.9812i
0.1897 + 0.9818i
0.1897 - 0.9818i
-0.1880 + 0.9822i
-0.1880 - 0.9822i
0.1866 + 0.9824i
0.1866 - 0.9824i
0.9935 + 0.1136i
0.9935 - 0.1136i
0.9939 + 0.1105i
0.9939 - 0.1105i
0.9942 + 0.1073i
0.9942 - 0.1073i
0.9946 + 0.1042i
0.9946 - 0.1042i
0.9949 + 0.1011i
0.9949 - 0.1011i
0.9952 + 0.0979i
0.9952 - 0.0979i
0.9955 + 0.0948i
0.9955 - 0.0948i
0.9961 + 0.0885i
0.9961 - 0.0885i
0.9958 + 0.0916i
0.9958 - 0.0916i
-0.1849 + 0.9828i
-0.1849 - 0.9828i
0.1835 + 0.9830i
0.1835 - 0.9830i
-0.9823 + 0.1873i
-0.9823 - 0.1873i
-0.9829 + 0.1842i
-0.9829 - 0.1842i
0.9964 + 0.0854i
0.9964 - 0.0854i
0.9966 + 0.0822i
0.9966 - 0.0822i
-0.1818 + 0.9833i
-0.1818 - 0.9833i
-0.9835 + 0.1811i
-0.9835 - 0.1811i
0.1804 + 0.9836i
0.1804 - 0.9836i
0.1773 + 0.9842i
0.1773 - 0.9842i
-0.1788 + 0.9839i
-0.1788 - 0.9839i
-0.1757 + 0.9844i
-0.1757 - 0.9844i
0.9969 + 0.0791i
0.9969 - 0.0791i
0.9971 + 0.0759i
0.9971 - 0.0759i
0.9973 + 0.0728i
0.9973 - 0.0728i
1.0000 + 0.0000i
1.0000 + 0.0032i
1.0000 - 0.0032i
1.0000 + 0.0063i
1.0000 - 0.0063i
1.0000 + 0.0095i
1.0000 - 0.0095i
0.9982 + 0.0601i
0.9982 - 0.0601i
0.9984 + 0.0570i
0.9984 - 0.0570i
0.9999 + 0.0127i
0.9999 - 0.0127i
0.9986 + 0.0538i
0.9986 - 0.0538i
0.9999 + 0.0158i
0.9999 - 0.0158i
0.9980 + 0.0633i
0.9980 - 0.0633i
0.9978 + 0.0664i
0.9978 - 0.0664i
0.9987 + 0.0507i
0.9987 - 0.0507i
0.9998 + 0.0190i
0.9998 - 0.0190i
0.9989 + 0.0475i
0.9989 - 0.0475i
0.9998 + 0.0222i
0.9998 - 0.0222i
-0.9840 + 0.1780i
-0.9840 - 0.1780i
-0.1726 + 0.9850i
-0.1726 - 0.9850i
0.1742 + 0.9847i
0.1742 - 0.9847i
-0.1695 + 0.9855i
-0.1695 - 0.9855i
-0.1664 + 0.9861i
-0.1664 - 0.9861i
-0.9846 + 0.1749i
-0.9846 - 0.1749i
0.1711 + 0.9852i
0.1711 - 0.9852i
0.1680 + 0.9858i
0.1680 - 0.9858i
-0.1633 + 0.9866i
-0.1633 - 0.9866i
-0.9851 + 0.1718i
-0.9851 - 0.1718i
0.1649 + 0.9863i
0.1649 - 0.9863i
0.1618 + 0.9868i
0.1618 - 0.9868i
-0.9857 + 0.1688i
-0.9857 - 0.1688i
-0.9862 + 0.1657i
-0.9862 - 0.1657i
0.9997 + 0.0254i
0.9997 - 0.0254i
0.9990 + 0.0443i
0.9990 - 0.0443i
0.9992 + 0.0412i
0.9992 - 0.0412i
0.9996 + 0.0285i
0.9996 - 0.0285i
-0.1602 + 0.9871i
-0.1602 - 0.9871i
0.1587 + 0.9873i
0.1587 - 0.9873i
-0.9867 + 0.1626i
-0.9867 - 0.1626i
-0.9872 + 0.1595i
-0.9872 - 0.1595i
-0.9877 + 0.1564i
-0.9877 - 0.1564i
0.1556 + 0.9878i
0.1556 - 0.9878i
-0.1571 + 0.9876i
-0.1571 - 0.9876i
0.1525 + 0.9883i
0.1525 - 0.9883i
-0.9882 + 0.1533i
-0.9882 - 0.1533i
-0.1540 + 0.9881i
-0.1540 - 0.9881i
0.1494 + 0.9888i
0.1494 - 0.9888i
-0.1509 + 0.9886i
-0.1509 - 0.9886i
-0.1478 + 0.9890i
-0.1478 - 0.9890i
0.1463 + 0.9892i
0.1463 - 0.9892i
0.1432 + 0.9897i
0.1432 - 0.9897i
-0.1447 + 0.9895i
-0.1447 - 0.9895i
-0.9887 + 0.1502i
-0.9887 - 0.1502i
0.9995 + 0.0317i
0.9995 - 0.0317i
0.9993 + 0.0380i
0.9993 - 0.0380i
0.1401 + 0.9901i
0.1401 - 0.9901i
-0.1416 + 0.9899i
-0.1416 - 0.9899i
0.1370 + 0.9906i
0.1370 - 0.9906i
-0.1385 + 0.9904i
-0.1385 - 0.9904i
-0.9891 + 0.1470i
-0.9891 - 0.1470i
0.9976 + 0.0696i
0.9976 - 0.0696i
0.1339 + 0.9910i
0.1339 - 0.9910i
0.1308 + 0.9914i
0.1308 - 0.9914i
-0.1353 + 0.9908i
-0.1353 - 0.9908i
-0.9896 + 0.1439i
-0.9896 - 0.1439i
-0.9900 + 0.1408i
-0.9900 - 0.1408i
-0.1322 + 0.9912i
-0.1322 - 0.9912i
0.1277 + 0.9918i
0.1277 - 0.9918i
-0.9905 + 0.1377i
-0.9905 - 0.1377i
-0.1291 + 0.9916i
-0.1291 - 0.9916i
-0.9909 + 0.1346i
-0.9909 - 0.1346i
0.1246 + 0.9922i
0.1246 - 0.9922i
-0.1260 + 0.9920i
-0.1260 - 0.9920i
-0.1229 + 0.9924i
-0.1229 - 0.9924i
-0.9913 + 0.1315i
-0.9913 - 0.1315i
-0.9917 + 0.1284i
-0.9917 - 0.1284i
0.1214 + 0.9926i
0.1214 - 0.9926i
0.1183 + 0.9930i
0.1183 - 0.9930i
0.1152 + 0.9933i
0.1152 - 0.9933i
-0.1198 + 0.9928i
-0.1198 - 0.9928i
-0.1167 + 0.9932i
-0.1167 - 0.9932i
-0.1135 + 0.9935i
-0.1135 - 0.9935i
0.9994 + 0.0348i
0.9994 - 0.0348i
0.1121 + 0.9937i
0.1121 - 0.9937i
0.1090 + 0.9940i
0.1090 - 0.9940i
0.1058 + 0.9944i
0.1058 - 0.9944i
-0.1104 + 0.9939i
-0.1104 - 0.9939i
0.1027 + 0.9947i
0.1027 - 0.9947i
-0.1073 + 0.9942i
-0.1073 - 0.9942i
-0.1042 + 0.9946i
-0.1042 - 0.9946i
-0.1010 + 0.9949i
-0.1010 - 0.9949i
-0.9921 + 0.1253i
-0.9921 - 0.1253i
-0.9925 + 0.1222i
-0.9925 - 0.1222i
-0.9929 + 0.1190i
-0.9929 - 0.1190i
-0.9933 + 0.1159i
-0.9933 - 0.1159i
-0.0979 + 0.9952i
-0.0979 - 0.9952i
-0.9936 + 0.1128i
-0.9936 - 0.1128i
-0.9940 + 0.1097i
-0.9940 - 0.1097i
-0.9943 + 0.1066i
-0.9943 - 0.1066i
-0.9946 + 0.1034i
-0.9946 - 0.1034i
0.0996 + 0.9950i
0.0996 - 0.9950i
0.0965 + 0.9953i
0.0965 - 0.9953i
0.0933 + 0.9956i
0.0933 - 0.9956i
-0.0917 + 0.9958i
-0.0917 - 0.9958i
-0.0948 + 0.9955i
-0.0948 - 0.9955i
-0.9950 + 0.1003i
-0.9950 - 0.1003i
-0.9953 + 0.0972i
-0.9953 - 0.0972i
0.0902 + 0.9959i
0.0902 - 0.9959i
-0.0885 + 0.9961i
-0.0885 - 0.9961i
0.0871 + 0.9962i
0.0871 - 0.9962i
0.0777 + 0.9970i
0.0777 - 0.9970i
0.0808 + 0.9967i
0.0808 - 0.9967i
0.0840 + 0.9965i
0.0840 - 0.9965i
-0.9956 + 0.0941i
-0.9956 - 0.0941i
-0.9959 + 0.0909i
-0.9959 - 0.0909i
-0.9961 + 0.0878i
-0.9961 - 0.0878i
-1.0000 + 0.0000i
-0.9964 + 0.0847i
-0.9964 - 0.0847i
-0.9967 + 0.0816i
-0.9967 - 0.0816i
-0.9999 + 0.0126i
-0.9999 - 0.0126i
-1.0000 + 0.0094i
-1.0000 - 0.0094i
-1.0000 + 0.0031i
-1.0000 - 0.0031i
-0.9982 + 0.0596i
-0.9982 - 0.0596i
-0.9978 + 0.0659i
-0.9978 - 0.0659i
-0.9974 + 0.0722i
-0.9974 - 0.0722i
-0.9980 + 0.0628i
-0.9980 - 0.0628i
-1.0000 + 0.0063i
-1.0000 - 0.0063i
-0.9976 + 0.0690i
-0.9976 - 0.0690i
-0.9969 + 0.0784i
-0.9969 - 0.0784i
-0.9972 + 0.0753i
-0.9972 - 0.0753i
-0.9984 + 0.0565i
-0.9984 - 0.0565i
-0.9999 + 0.0157i
-0.9999 - 0.0157i
-0.9992 + 0.0408i
-0.9992 - 0.0408i
-0.9990 + 0.0439i
-0.9990 - 0.0439i
-0.9993 + 0.0377i
-0.9993 - 0.0377i
-0.9986 + 0.0534i
-0.9986 - 0.0534i
-0.9994 + 0.0345i
-0.9994 - 0.0345i
-0.9989 + 0.0471i
-0.9989 - 0.0471i
-0.9995 + 0.0314i
-0.9995 - 0.0314i
-0.9987 + 0.0502i
-0.9987 - 0.0502i
-0.9996 + 0.0283i
-0.9996 - 0.0283i
-0.9997 + 0.0251i
-0.9997 - 0.0251i
-0.9998 + 0.0188i
-0.9998 - 0.0188i
-0.9998 + 0.0220i
-0.9998 - 0.0220i
0.0746 + 0.9972i
0.0746 - 0.9972i
0.0714 + 0.9974i
0.0714 - 0.9974i
0.0683 + 0.9977i
0.0683 - 0.9977i
0.0652 + 0.9979i
0.0652 - 0.9979i
-0.0854 + 0.9963i
-0.0854 - 0.9963i
-0.0823 + 0.9966i
-0.0823 - 0.9966i
-0.0792 + 0.9969i
-0.0792 - 0.9969i
-0.0760 + 0.9971i
-0.0760 - 0.9971i
-0.0698 + 0.9976i
-0.0698 - 0.9976i
-0.0729 + 0.9973i
-0.0729 - 0.9973i
0.0620 + 0.9981i
0.0620 - 0.9981i
0.0589 + 0.9983i
0.0589 - 0.9983i
-0.0666 + 0.9978i
-0.0666 - 0.9978i
-0.0635 + 0.9980i
-0.0635 - 0.9980i
0.0495 + 0.9988i
0.0495 - 0.9988i
0.0526 + 0.9986i
0.0526 - 0.9986i
0.0464 + 0.9989i
0.0464 - 0.9989i
0.0432 + 0.9991i
0.0432 - 0.9991i
0.0558 + 0.9984i
0.0558 - 0.9984i
0.0401 + 0.9992i
0.0401 - 0.9992i
-0.0604 + 0.9982i
-0.0604 - 0.9982i
-0.0541 + 0.9985i
-0.0541 - 0.9985i
-0.0572 + 0.9984i
-0.0572 - 0.9984i
-0.0510 + 0.9987i
-0.0510 - 0.9987i
-0.0478 + 0.9989i
-0.0478 - 0.9989i
-0.0415 + 0.9991i
-0.0415 - 0.9991i
-0.0447 + 0.9990i
-0.0447 - 0.9990i
0.0369 + 0.9993i
0.0369 - 0.9993i
-0.0384 + 0.9993i
-0.0384 - 0.9993i
0.0338 + 0.9994i
0.0338 - 0.9994i
-0.0353 + 0.9994i
-0.0353 - 0.9994i
-0.0259 + 0.9997i
-0.0259 - 0.9997i
-0.0290 + 0.9996i
-0.0290 - 0.9996i
-0.0227 + 0.9997i
-0.0227 - 0.9997i
-0.0321 + 0.9995i
-0.0321 - 0.9995i
0.0307 + 0.9995i
0.0307 - 0.9995i
0.0212 + 0.9998i
0.0212 - 0.9998i
0.0181 + 0.9998i
0.0181 - 0.9998i
0.0244 + 0.9997i
0.0244 - 0.9997i
0.0150 + 0.9999i
0.0150 - 0.9999i
0.0024 + 1.0000i
0.0024 - 1.0000i
-0.0007 + 1.0000i
-0.0007 - 1.0000i
-0.0196 + 0.9998i
-0.0196 - 0.9998i
0.0275 + 0.9996i
0.0275 - 0.9996i
0.0087 + 1.0000i
0.0087 - 1.0000i
0.0055 + 1.0000i
0.0055 - 1.0000i
-0.0102 + 0.9999i
-0.0102 - 0.9999i
-0.0039 + 1.0000i
-0.0039 - 1.0000i
-0.0070 + 1.0000i
-0.0070 - 1.0000i
-0.0133 + 0.9999i
-0.0133 - 0.9999i
-0.0164 + 0.9999i
-0.0164 - 0.9999i
0.0118 + 0.9999i
0.0118 - 0.9999i
0.8988 + 0.0000i
Except for the first element (1.1126), the absolute values of all the others are uniformly 1.
This time, ‘y’ corresponds to:
syms x
yp = vpa(poly2sym(y,x),5)
yp =
figure
fplot(yp, [-1000, 1000])
grid
axis([-pi pi -5 5])
The vertical dashed lines indicate singularities .
The sin function has an infiinty of roots, those being radians, where n is an integer. It is necessary to use a zero-finding algorithm (such as fzero or fsolve) or interpolation (interp1) to locate them, not the roots function.
.
More Answers (1)
darova
on 30 Jul 2021
I'd try fsolve for solving
Read help carefully:
fplot(f,[0 10])
1 Comment
raha ahmadi
on 30 Jul 2021
Edited: raha ahmadi
on 30 Jul 2021
Dear darova
Thank you for your help, I read fsolve but I think it solves a system of nonlinear equations. I used fzero instead but I only got one answer I need solve it in some periods and get more roots
Best regards
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!An Error Occurred
Unable to complete the action because of changes made to the page. Reload the page to see its updated state.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)