serpind.m

serpentine traversal of an N-dimensional array
595 Downloads
Updated 31 Mar 2016

View License

function [p,ip,m] = serpind(s)
% Return serpentine indexing list for array size s.
%
% syntax:
% p = serpind(s);
% [p,ip] = serpind(s);
% [p,ip,m] = serpind(s);
%
% input arg:
%
% s (size-[1,N] array of non-negative integers): array size
%
% output args:
%
% p (size-[M,1] array of non-negative integers; M = prod(s)): flat indexing list for
% serpentine array traversal (p is a permutation of (1:M).'.)
%
% ip (size-[M,1] array of non-negative integers; optional output): inverse permutation
% of p
%
% m (size-[M,N] array of non-negative integers; optional output): N-dimensional array
% subscripts corresponding to p
%
% Each element p(j) corresponds to a multidimensional array subscript list m(j,1:N)
% defined by
% [m(j,1), m(j,2), ... m(j,N)] = ind2sub(s,p(j))
% The subscript lists m(1,:), m(2,:), ... traverse the set of all indices for a size-s
% array (i.e., 1 <= m(j,k) <= s(k) for each j = 1:M, k = 1:N). The "serpentine"
% traversal order has the property that m(j,:) and m(j+1,:) differ in only one dimension
% index, and the difference in that index is either +1 or -1.
%
% The index list p is a permutation of (1:M).', and its inverse is ip (i.e., p(ip) =
% (1:M).'). Thus, for an array A, the two sequential operations
% A = A(p);
% A = A(ip);
% are equivalent to
% A = A(:);
%
% The elements of a size-s array A can be sequenced in serpentine order as follows,
% s = size(A);
% [p,ip] = serpind(s);
% A = A(p);
% The original array can then be reconstructed as follows:
% A = reshape(A(ip),s);
%
% Version 04/09/2006
% Author: Kenneth C. Johnson
% software.kjinnovation.com
%
% See ZipInterp.pdf, Section 9.4 ("Seed chaining"), on the KJ Innovation website for an
% application example illustrating the use of serpind.m.
%
N = length(s);
M = prod(s);
p = zeros(M,1);
if M==0
if nargout>=2
ip = p;
if nargout>=3
m = zeros(0,N);
end
end
return
end
p(1) = 1;
len = 1;
stride = 1;
for k = 1:N
L = len;
for j=2:s(k)
p(len+1:len+L) = p(len:-1:len-L+1)+stride;
len = len+L;
end
stride = stride*s(k);
end
if nargout>=2
ip(p,1) = (1:M).';
if nargout>=3
[m{1:N}] = ind2sub(s,p);
m = cell2mat(m);
end
end

Cite As

Kenneth Johnson (2024). serpind.m (https://www.mathworks.com/matlabcentral/fileexchange/10756-serpind-m), MATLAB Central File Exchange. Retrieved .

MATLAB Release Compatibility
Created with R2006a
Compatible with any release
Platform Compatibility
Windows macOS Linux
Categories
Find more on Matrices and Arrays in Help Center and MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Published Release Notes
1.0.0.0

Updated to add BSD License.