Mittag-Leffer derivative

Evaluates integer-order derivatives of the Mittag-Leffler (ML) function
9 Downloads
Updated 17 Nov 2025

View License

% ML_DERIV Integer-order derivatives of the Mittag-Leffler function
%
% Ek = ML_DERIV(Z, ALPHA, K) evaluates the K-th integer-order derivative
% of the one-parameter Mittag-Leffler function E_{ALPHA}(Z). Z may be a
% real or complex scalar or vector. ALPHA must be a positive real scalar.
% K must be a scalar integer.
%
% Ek = ML_DERIV(Z, ALPHA, BETA, K) evaluates the K-th integer-order
% derivative of the two-parameter Mittag-Leffler function E_{ALPHA,BETA}(Z).
% Z may be a real or complex scalar or vector. ALPHA must be a positive
% real scalar. BETA must be a real scalar. K must be a scalar integer.
%
% Note: Accuracy may decrease for derivatives of very high order K.
%
% TECHNICAL NOTES
% The derivatives are computed using an algorithm that combines a
% summation formula based on the Prabhakar function with a numerical
% Laplace-transform inversion method [2], guided by the derivatives-
% balancing technique introduced in [1]. A full description of the
% algorithm and its applications is provided in [3]. If this function is
% used for research or publications, please cite [3].
%
% REFERENCES
% [1] R. Garrappa and M. Popolizio, Computing the matrix Mittag-Leffler
% function with applications to fractional calculus, J. Sci. Comput.,
% 2018, 17(1), 129–153.
%
% [2] R. Garrappa, Numerical Evaluation of two- and three-parameter
% Mittag-Leffler functions, SIAM J. Numer. Anal., 2015, 53(3),
% 1350–1369.
%
% [3] D. Biolek, R. Garrappa, F. Mainardi, M. Popolizio, Derivatives of
% Mittag-Leffler functions: theory, computation and applications,
% Nonlinear Dynamics, 113, 34389–34403 (2025).
% https://doi.org/10.1007/s11071-025-11682-3
%
% Please, report any problem or comment to :
% roberto dot garrappa at uniba dot it
%
% Copyright (c) 2025
%
% Authors:
% Roberto Garrappa (University of Bari, Italy)
% roberto dot garrappa at uniba dot it
% Homepage: https://www.dm.uniba.it/members/garrappa

Cite As

D. Biolek, R. Garrappa, F. Mainardi, M. Popolizio, Derivatives of Mittag-Leffler functions: theory, computation and applications, Nonlinear Dynamics, 113, 34389–34403 (2025). https://doi.org/10.1007/s11071-025-11682-3

MATLAB Release Compatibility
Created with R2024a
Compatible with any release
Platform Compatibility
Windows macOS Linux
Tags Add Tags
Version Published Release Notes
1.0.1

Function description has been improved

1.0.0