Newton Raphson Optimization by Symbolic Math
For a quick start, copy the files and run 'Newton_Raphson_Symbolic_Math_Example.m'
The Newton-Raphson optimization method attempts to minimizes a target function by zeroing its gradient. This method is highly efficient, especially for convex or semi-convex functions, but requires explicit expressions of the gradient vector and Hessian matrix. Direct calculation of these derivatives may be tedious in many cases. This function simplifies the Newton Raphson algorithm by calculating these derivatives automatically using symbolic math.
To use the function, all one has to do is to create a symbolic function. The software will compute the derivatives automatically, and execute the Newton Raphson algorithm to find a minimum point.
Cite As
yoash levron (2025). Newton Raphson Optimization by Symbolic Math (https://www.mathworks.com/matlabcentral/fileexchange/53422-newton-raphson-optimization-by-symbolic-math), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
- Mathematics and Optimization > Optimization Toolbox > Systems of Nonlinear Equations > Newton-Raphson Method >
- Mathematics and Optimization > Optimization Toolbox > Problem-Based Optimization Setup >
- Mathematics and Optimization > Symbolic Math Toolbox > Mathematics > Calculus >
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
Version | Published | Release Notes | |
---|---|---|---|
1.0.0.0 |