kmeans_varpar(X,k)
Implementation of K-means with Variance Partitioning initialization. Variance Partitioning initialization is a deterministic way of initializing the data centroids, thus producing results that are repeatable and reproducible, without having to resort to tricks like seeding the pseudorandom number generator.
Cite As
Stefan Philippo Pszczolkowski Parraguez (2024). kmeans_varpar(X,k) (https://www.mathworks.com/matlabcentral/fileexchange/57229-kmeans_varpar-x-k), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
- AI and Statistics > Statistics and Machine Learning Toolbox > Cluster Analysis and Anomaly Detection >
Tags
Acknowledgements
Inspired by: k-means++
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
Version | Published | Release Notes | |
---|---|---|---|
1.0.1.0 | Removed loop that made sure that the number of returned centrers is equal to the specified k. This is arguably not necessary and since variance partitioning provides a deterministic result, there is potential for getting trapped in an infinite loop.
|
||
1.0.0.0 |