Adam stochastic gradient descent optimization
`fmin_adam` is an implementation of the Adam optimisation algorithm (gradient descent with Adaptive learning rates individually on each parameter, with Momentum) from Kingma and Ba [1]. Adam is designed to work on stochastic gradient descent problems; i.e. when only small batches of data are used to estimate the gradient on each iteration, or when stochastic dropout regularisation is used [2].
See GIT repository for examples:
https://github.com/DylanMuir/fmin_adam
Usage:
[x, fval, exitflag, output] = fmin_adam(fun, x0 <, stepSize, beta1, beta2, epsilon, nEpochSize, options>)
See the function help for a detailed reference. The github repository has a couple of examples.
References:
[1] Diederik P. Kingma, Jimmy Ba. "Adam: A Method for Stochastic Optimization", ICLR 2015. [https://arxiv.org/abs/1412.6980](https://arxiv.org/abs/1412.6980)
[2] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R. Salakhutdinov. "Improving neural networks by preventing co-adaptation of feature detectors." arXiv preprint. [https://arxiv.org/abs/1207.0580](https://arxiv.org/abs/1207.0580)
Cite As
Dylan Muir (2025). Adam stochastic gradient descent optimization (https://github.com/DylanMuir/fmin_adam), GitHub. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
Versions that use the GitHub default branch cannot be downloaded
Version | Published | Release Notes | |
---|---|---|---|
1.0.0.0 | Updated title
Updated description
|
|