Parallel Computing TEDA Clustering Algorithm

The source code of the parallel computing TEDA clustering algorithm
193 Downloads
Updated 11 Nov 2018

View License

The package contains:

1. ParallelTEDAClustering.m - The source code of the parallel computing TEDA clustering algorithm;

2. demo.m - The demo

Reference:
Gu X., Angelov P.P., Gutierrez G., Iglesias J.A., Sanchis A. (2017) Parallel Computing TEDA for High Frequency Streaming Data Clustering. In: Angelov P., Manolopoulos Y., Iliadis L., Roy A., Vellasco M. (eds) Advances in Big Data. INNS 2016. Advances in Intelligent Systems and Computing, vol 529. Springer, Cham

Please cite this algorithm using the above reference if this code helps.

For any queries about the codes, please contact Prof. Plamen P. Angelov (p.angelov@lancaster.ac.uk) and Dr. Xiaowei Gu (x.gu3@lancaster.ac.uk)

Programmed by Xiaowei Gu

Cite As

Gu X., Angelov P.P., Gutierrez G., Iglesias J.A., Sanchis A. (2017) Parallel Computing TEDA for High Frequency Streaming Data Clustering. In: Angelov P., Manolopoulos Y., Iliadis L., Roy A., Vellasco M. (eds) Advances in Big Data. INNS 2016. Advances in Intelligent Systems and Computing, vol 529. Springer, Cham

MATLAB Release Compatibility
Created with R2018a
Compatible with any release
Platform Compatibility
Windows macOS Linux
Categories
Find more on Statistics and Machine Learning Toolbox in Help Center and MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Published Release Notes
1.0.1

Updated the reference

1.0.0