Empirical Approach to Machine Learning Software Package
This package contains the supplementary software for the book titled: Empirical Approach to Machine Learning.
This package is composed of:
1. AAD.m - Autonomous Anomaly Detection Algorithm
2. ADP.m - Autonomous Data Partitioning Algorithm
3. ALMMo0.m - Autonomous Learning Multi-Model System of Zero-Order
4. ALMMo1.m - Autonomous Learning Multi-Model System of First-Order
5. DRB.m - Deep Rule-Based System
6. SSDRB.m - Semi-Supervised Deep Rule-Based System
7. ASSDRB.m - Active Semi-Supervised Deep Rule-Based System
and a few datasets for demonstration.
The detailed instructions for the source codes can be found in:
P. Angelov, X. Gu, "Empirical Approach to Machine Learning," Springer, ISBN: 978-3-030-02383-6, 2018.
Please cite this software package using the above reference if it helps.
For any queries about the codes, please contact Prof. Plamen P. Angelov (p.angelov@lancaster.ac.uk) and Dr. Xiaowei Gu (x.gu3@lancaster.ac.uk)
Programmed by Xiaowei Gu
Cite As
X.Gu&P.Angelov (2024). Empirical Approach to Machine Learning Software Package (https://www.mathworks.com/matlabcentral/fileexchange/69012-empirical-approach-to-machine-learning-software-package), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
SupplementarySourceCodes
Version | Published | Release Notes | |
---|---|---|---|
1.0.0 |