Skip to content
MathWorks - Mobile View
  • Sign In to Your MathWorks AccountSign In to Your MathWorks Account
  • Access your MathWorks Account
    • My Account
    • My Community Profile
    • Link License
    • Sign Out
  • Products
  • Solutions
  • Academia
  • Support
  • Community
  • Events
  • Get MATLAB
MathWorks
  • Products
  • Solutions
  • Academia
  • Support
  • Community
  • Events
  • Get MATLAB
  • Sign In to Your MathWorks AccountSign In to Your MathWorks Account
  • Access your MathWorks Account
    • My Account
    • My Community Profile
    • Link License
    • Sign Out

Videos and Webinars

  • MathWorks
  • Videos
  • Videos Home
  • Search
  • Videos Home
  • Search
  • Contact sales
  • Trial software
12:43 Video length is 12:43.
  • Description
  • Related Resources

Data-Driven Robust Control of Insulin Therapy

From the series: MathWorks Research Summit

Nicola Paoletti, Department of Computer Science, Royal Holloway, University of London (UK)

Automated insulin delivery, a.k.a. the artificial pancreas (AP), has the potential to revolutionize Type-1 diabetes (T1D) therapy by improving glucose control and reducing the burden of self-care. The design of a fully closed-loop insulin controller is, however, still challenging because the blood glucose (BG) levels to control are significantly affected by unknown disturbances related to the patient behavior; namely, meals and physical activity. Accurate insulin control is also made difficult by the fact that glucose measurements are taken underneath the skin, and thus are delayed with respect to the BG due to physiological transport dynamics.

The discussion gives an overview of current T1D therapy practice and the challenges behind closed-loop insulin control and presents an AP system design—implemented and evaluated in MATLAB®—that addresses these challenges through the integration of control techniques and data-driven models of patient behavior, showing simulation results on virtual patient models.

Highlights:

  • Design a new AP system based on min-max robust model-predictive control (MPC), which computes at each time the insulin therapy that maximizes the predicted worst-case performance (i.e., how well BG stays "in range") with respect to the unknown future patient behavior.
  • Learn data-driven models of meal and exercise behavior, models that allow restricting the domain of the unknown patient-related disturbances, thereby making the controller less conservative. The learning method ensures with arbitrarily high probability that such models, and, in turn, the controller using them, cover all possible behaviors of the unknown data-generating distribution.
  • Develop a Moving Horizon Estimator to recover the (unknown) system state from delayed and noisy glucose measurements and estimate the most likely meal and exercise disturbances.
  • Evaluate the AP system design on virtual patients, i.e., on accurate differential equation models of the glucose/insulin metabolism, using data-driven meal behavior models learned from the CDC's NHANES database (from over 8,600 participants).
  • Show that the AP system keeps the BG within healthy ranges more than 93% of the time.
  • Use MATLAB for the AP system implementation and experimental evaluation.

This research was conducted by the speaker while at the Department of Computer Science, Stony Brook University (USA).

Related Products

  • MATLAB
  • Control System Toolbox
  • Global Optimization Toolbox
  • Optimization Toolbox
  • Statistics and Machine Learning Toolbox

Bridging Wireless Communications Design and Testing with MATLAB

Read white paper

Feedback

Featured Product

MATLAB

  • Request Trial
  • Get Pricing

Up Next:

A proactive defense control mechanism for maximizing system unpredictability by dynamic stochastic switching of attack surfaces while optimally controlling the system using a Q-learning framework.
19:14
A Reinforcement Learning Framework for Smart, Secure, and...
View full series (17 Videos)

Related Videos:

16:47
Kohler Builds Reliability Test System Using Data...
20:23
Multidomain Model-Driven Software Development at Volvo Car...
32:03
Lean Data Analysis: The Awesome Data Dexterity of MATLAB...
28:27
Data Processing Framework Supporting Large Scale Driving...
30:38
Data Processing Framework Supporting Large-Scale Driving...

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

  • Switzerland (English)
  • Switzerland (Deutsch)
  • Switzerland (Français)
  • 中国 (简体中文)
  • 中国 (English)

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • Contact sales
  • Trial software

MathWorks

Accelerating the pace of engineering and science

MathWorks is the leading developer of mathematical computing software for engineers and scientists.

Discover…

Explore Products

  • MATLAB
  • Simulink
  • Student Software
  • Hardware Support
  • File Exchange

Try or Buy

  • Downloads
  • Trial Software
  • Contact Sales
  • Pricing and Licensing
  • How to Buy

Learn to Use

  • Documentation
  • Tutorials
  • Examples
  • Videos and Webinars
  • Training

Get Support

  • Installation Help
  • MATLAB Answers
  • Consulting
  • License Center
  • Contact Support

About MathWorks

  • Careers
  • Newsroom
  • Social Mission
  • Customer Stories
  • About MathWorks
  • Select a Web Site United States
  • Trust Center
  • Trademarks
  • Privacy Policy
  • Preventing Piracy
  • Application Status

© 1994-2022 The MathWorks, Inc.

  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • LinkedIn
  • RSS

Join the conversation