Low Velocity Maneuvering Development with the MathWorks Toolchain
Jonathan Naor, General Motors
Alon Davidi, General Motors
The last hundred meters of an autonomous drive entail unique challenges. There is variability in direction as the vehicle may drive in reverse or perform three-point turns. There are often no road markings, no GPS signal, and no map. This is where a self-driving car is at its most autonomous. The problem statement of the Low Velocity Maneuvering (LVM) team at General Motors is to drive the vehicle in a GPS denied environment with high accuracy, in a variety of parking scenarios such as street parking, valet parking, and learned parking. In this talk we review our LVM development cycle, starting from the architecture management, model-based development, requirements and testing coverage, MIL/SIL/HIL simulations, and code generation for multiple platforms.
Published: 27 May 2021
Up Next:
Related Videos:
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)