Video and Webinar Series

Reinforcement Learning

This series provides an overview of reinforcement learning, a type of machine learning that has the potential to solve some control system problems that are too difficult to solve with traditional techniques.  

We’ll cover the basics of the reinforcement problem and how it differs from traditional control techniques. We’ll show why neural networks are used to represent unknown functions and how the agent uses rewards from the environment to train them. 

By the end of this series, you’ll be better prepared to answer questions like:

  • What is reinforcement learning and why should I consider it when solving my control problem?
  • How do I set up and solve the reinforcement learning problem?
  • What are some of the benefits and drawbacks of reinforcement learning compared to a traditional controls approach?

What Is Reinforcement Learning?

Get an overview of reinforcement learning from the perspective of an engineer. Reinforcement learning is a type of machine learning that has the potential to solve some really hard control problems.

Understanding the Environment and Rewards

In this video, we build on our basic understanding of reinforcement learning by exploring the workflow. What is the environment? How do reward functions incentivize an agent? How are policies structured?

Policies and Learning Algorithms

Introduction to reinforcement learning algorithms and neural network policies.

The Walking Robot Problem

Application of reinforcement learning for robotics, and specifically for bipedal robot walking.

Overcoming the Practical Challenges of Reinforcement Learning

There are a few challenges that occur when using reinforcement learning for production systems and there are some ways to mitigate them. This video covers the difficulties of verifying the learned solution and what you can do about it.

An Introduction to Multi-Agent Reinforcement Learning

Learn what multi-agent reinforcement learning is and some of the challenges it faces and overcomes.

Why Choose Model-Based Reinforcement Learning?

Compare model-free and model-based reinforcement learning approaches and gain a better understanding of which method to use depending on the situation.