setLearnRateFactor
Set learn rate factor of layer learnable parameter
Syntax
Description
sets the learn rate factor of the parameter with the name
layerUpdated
= setLearnRateFactor(layer
,parameterName
,factor
)parameterName
in layer
to
factor
.
For built-in layers, you can set the learn rate factor directly by using the
corresponding property. For example, for a convolution2dLayer
layer, the syntax layer =
setLearnRateFactor(layer,'Weights',factor)
is equivalent to
layer.WeightLearnRateFactor = factor
.
sets the learn rate factor of the parameter specified by the path
layerUpdated
= setLearnRateFactor(layer
,parameterPath
,factor
)parameterPath
. Use this syntax when the layer is a
networkLayer
or when the parameter is in a
dlnetwork
object in a custom layer.
sets the learn rate factor of the parameter with the name
netUpdated
= setLearnRateFactor(net
,layerName
,parameterName
,factor
)parameterName
in the layer with name
layerName
for the specified dlnetwork
object.
sets the learn rate factor of the parameter specified by the path
netUpdated
= setLearnRateFactor(net
,parameterPath
,factor
)parameterPath
. Use this syntax when the parameter is in
a networkLayer
or when the parameter is in a
dlnetwork
object in a custom layer.
Examples
Set and Get Learning Rate Factor of Learnable Parameter
Set and get the learning rate factor of a learnable parameter of a custom SReLU layer.
Create a layer array containing the custom layer sreluLayer
, attached to this example as a supporting file. To access this layer, open this example as a live script.
layers = [ ...
imageInputLayer([28 28 1])
convolution2dLayer(5,20)
batchNormalizationLayer
sreluLayer
fullyConnectedLayer(10)
softmaxLayer];
Set the learn rate factor of the LeftThreshold
learnable parameter of the sreluLayer
to 2.
layers(4) = setLearnRateFactor(layers(4),"LeftThreshold",2);
View the updated learn rate factor.
factor = getLearnRateFactor(layers(4),"LeftThreshold")
factor = 2
Set and Get Learning Rate Factor of Custom Nested Layer Learnable Parameter
Set and get the learning rate factor of a learnable parameter of a nested layer defined using network composition.
Create a residual block layer using the custom layer residualBlockLayer
attached to this example as a supporting file. To access this file, open this example as a Live Script.
numFilters = 64; layer = residualBlockLayer(numFilters)
layer = residualBlockLayer with properties: Name: '' Learnable Parameters Network: [1x1 dlnetwork] State Parameters Network: [1x1 dlnetwork] Use properties method to see a list of all properties.
View the layers of the nested network.
layer.Network.Layers
ans = 7x1 Layer array with layers: 1 'conv_1' 2-D Convolution 64 3x3 convolutions with stride [1 1] and padding 'same' 2 'batchnorm_1' Batch Normalization Batch normalization 3 'relu_1' ReLU ReLU 4 'conv_2' 2-D Convolution 64 3x3 convolutions with stride [1 1] and padding 'same' 5 'batchnorm_2' Batch Normalization Batch normalization 6 'add' Addition Element-wise addition of 2 inputs 7 'relu_2' ReLU ReLU
Set the learning rate factor of the learnable parameter 'Weights'
of the layer 'conv_1'
to 2 using the setLearnRateFactor
function.
factor = 2;
layer = setLearnRateFactor(layer,'Network/conv_1/Weights',factor);
Get the updated learning rate factor using the getLearnRateFactor
function.
factor = getLearnRateFactor(layer,'Network/conv_1/Weights')
factor = 2
Set and Get Learn Rate Factor of dlnetwork
Learnable Parameter
Set and get the learning rate factor of a learnable parameter of a dlnetwork
object.
Create a dlnetwork
object
net = dlnetwork; layers = [ imageInputLayer([28 28 1],Normalization="none",Name="in") convolution2dLayer(5,20,Name="conv") batchNormalizationLayer(Name="bn") reluLayer(Name="relu") fullyConnectedLayer(10,Name="fc") softmaxLayer(Name="sm")]; net = addLayers(net,layers);
Set the learn rate factor of the 'Weights'
learnable parameter of the convolution layer to 2 using the setLearnRateFactor
function.
factor = 2;
net = setLearnRateFactor(net,'conv',Weights=factor);
Get the updated learn rate factor using the getLearnRateFactor
function.
factor = getLearnRateFactor(net,'conv',"Weights")
factor = 2
Set and Get Learning Rate Factor of Nested Layer Learnable Parameter
Create an array of layers containing an lstmLayer
with 100 hidden units and a dropoutLayer
with a dropout probability of 0.2.
layers = [lstmLayer(100,OutputMode="sequence",Name="lstm") dropoutLayer(0.2,Name="dropout")];
Create a network layer containing these layers.
lstmDropoutLayer = networkLayer(layers,Name="lstmDropout");
Use the network layer to build a network.
layers = [sequenceInputLayer(3) lstmDropoutLayer lstmDropoutLayer fullyConnectedLayer(10) softmaxLayer];
Create a dlnetwork
object. You can also create a dlnetwork
object by training the network using the trainnet
function.
net = dlnetwork(layers);
Set the learning rate factor of the InputWeights
learnable parameter of the LSTM layer in the first network layer to 2 using the setLearnRateFactor
function.
factor = 2;
net = setLearnRateFactor(net,"lstmDropout_1/lstm/InputWeights",factor);
Get the updated learning rate factor using the getLearnRateFactor
function.
factor = getLearnRateFactor(net,"lstmDropout_1/lstm/InputWeights")
factor = 2
Set and Get Learning Rate Factor of Custom Nested dlnetwork
Learnable Parameter
Set and get the learning rate factor of a learnable parameter of a custom nested layer defined using network composition in a dlnetwork
object.
Create a dlnetwork
object containing the custom layer residualBlockLayer
attached to this example as a supporting file. To access this file, open this example as a Live Script.
inputSize = [224 224 3]; numFilters = 32; numClasses = 5; layers = [ imageInputLayer(inputSize,'Normalization','none','Name','in') convolution2dLayer(7,numFilters,'Stride',2,'Padding','same','Name','conv') groupNormalizationLayer('all-channels','Name','gn') reluLayer('Name','relu') maxPooling2dLayer(3,'Stride',2,'Name','max') residualBlockLayer(numFilters,'Name','res1') residualBlockLayer(numFilters,'Name','res2') residualBlockLayer(2*numFilters,'Stride',2,'IncludeSkipConvolution',true,'Name','res3') residualBlockLayer(2*numFilters,'Name','res4') residualBlockLayer(4*numFilters,'Stride',2,'IncludeSkipConvolution',true,'Name','res5') residualBlockLayer(4*numFilters,'Name','res6') globalAveragePooling2dLayer('Name','gap') fullyConnectedLayer(numClasses,'Name','fc') softmaxLayer('Name','sm')]; dlnet = dlnetwork(layers);
View the layers of the nested network in the layer 'res1'
.
dlnet.Layers(6).Network.Layers
ans = 7x1 Layer array with layers: 1 'conv_1' 2-D Convolution 32 3x3x32 convolutions with stride [1 1] and padding 'same' 2 'batchnorm_1' Batch Normalization Batch normalization with 32 channels 3 'relu_1' ReLU ReLU 4 'conv_2' 2-D Convolution 32 3x3x32 convolutions with stride [1 1] and padding 'same' 5 'batchnorm_2' Batch Normalization Batch normalization with 32 channels 6 'add' Addition Element-wise addition of 2 inputs 7 'relu_2' ReLU ReLU
Set the learning rate factor of the learnable parameter 'Weights'
of the layer 'conv_1'
to 2 using the setLearnRateFactor
function.
factor = 2;
dlnet = setLearnRateFactor(dlnet,'res1/Network/conv_1/Weights',factor);
Get the updated learning rate factor using the getLearnRateFactor
function.
factor = getLearnRateFactor(dlnet,'res1/Network/conv_1/Weights')
factor = 2
Freeze Learnable Parameters
Load a pretrained network.
net = imagePretrainedNetwork;
The Learnables
property of the dlnetwork
object is a table that contains the learnable parameters of the network. The table includes parameters of nested layers in separate rows. View the first few rows of the learnables table.
learnables = net.Learnables; head(learnables)
Layer Parameter Value __________________ _________ ___________________ "conv1" "Weights" {3x3x3x64 dlarray} "conv1" "Bias" {1x1x64 dlarray} "fire2-squeeze1x1" "Weights" {1x1x64x16 dlarray} "fire2-squeeze1x1" "Bias" {1x1x16 dlarray} "fire2-expand1x1" "Weights" {1x1x16x64 dlarray} "fire2-expand1x1" "Bias" {1x1x64 dlarray} "fire2-expand3x3" "Weights" {3x3x16x64 dlarray} "fire2-expand3x3" "Bias" {1x1x64 dlarray}
To freeze the learnable parameters of the network, loop over the learnable parameters and set the learn rate to 0 using the setLearnRateFactor
function.
factor = 0; numLearnables = size(learnables,1); for i = 1:numLearnables layerName = learnables.Layer(i); parameterName = learnables.Parameter(i); net = setLearnRateFactor(net,layerName,parameterName,factor); end
To use the updated learn rate factors when training, you must pass the dlnetwork object to the update function in the custom training loop. For example, use the command
[net,velocity] = sgdmupdate(net,gradients,velocity);
Input Arguments
layer
— Input layer
scalar Layer
object
Input layer, specified as a scalar Layer
object.
parameterName
— Parameter name
character vector | string scalar
Parameter name, specified as a character vector or a string scalar.
factor
— Learning rate factor
nonnegative scalar
Learning rate factor for the parameter, specified as a nonnegative scalar.
The software multiplies this factor by the global learning rate to
determine the learning rate for the specified parameter. For example, if
factor
is 2, then the learning rate for the
specified parameter is twice the current global learning rate. The software
determines the global learning rate based on the settings specified with the
trainingOptions
function.
Example:
2
parameterPath
— Path to parameter in nested layer
string scalar | character vector
Path to parameter in nested layer, specified as a string scalar or a character vector.
A nested layer can be a layer within a networkLayer
or a custom layer that itself defines a neural network as a learnable parameter.
If the input to setLearnRateFactor
is a layer, then:
If the nested layer is in a network layer, the parameter path has the form
"nestedLayerName/parameterName"
wherenestedlayerName
is the name of the nested layer inside the network layer, andparameterName
is the name of the parameter. If there are multiple levels of nested layers, then specify the path using the formnestedLayerName1/.../nestedLayerNameN/parameterName
.If the nested layer is a custom layer that itself defines a neural network as a learnable parameter, the parameter path has the form
"propertyName/layerName/parameterName"
wherepropertyName
is the name of the property containing adlnetwork
object,layerName
is the name of the layer in thedlnetwork
object, andparameterName
is the name of the parameter. If there are multiple levels of nested layers, then specify the path using the form"propertyName1/layerName1/.../propertyNameN/layerNameN/parameterName"
.
If the input to setLearnRateFactor
is a dlnetwork
object and the desired parameter is in a nested layer, then:
If the nested layer is in a network layer, the parameter path has the form
"networkLayerName/nestedLayerName/parameterName"
wherenetworkLayerName
is the name of the network layer,nestedlayerName
is the name of the nested layer inside the network layer, andparameterName
is the name of the parameter. If there are multiple levels of nested layers, then specify the path using the form"networkLayerName1/.../networkLayerNameN/nestedLayerName/parameterName"
.If the nested layer is a custom layer that itself defines a neural network as a learnable parameter, the parameter path has the form
"customLayerName1/propertyName/layerName/parameterName"
, wherelayerName1
is the name of the layer in the inputdlnetwork
object,propertyName
is the name of the property of the layer containing adlnetwork
object,layerName
is the name of the layer in thedlnetwork
object, andparameterName
is the name of the parameter. If there are multiple levels of nested layers, then specify the path using the form"customLayerName1/propertyName1/.../customLayerNameN/propertyNameN/layerName/parameterName"
.
Data Types: char
| string
net
— Neural network
dlnetwork
object
Neural network, specified as a dlnetwork
object.
layerName
— Layer name
string scalar | character vector
Layer name, specified as a string scalar or a character vector.
Data Types: char
| string
Output Arguments
layerUpdated
— Updated layer
Layer
object
Updated layer, returned as a Layer
.
netUpdated
— Updated network
dlnetwork
object
Updated network, returned as a dlnetwork
.
Version History
Introduced in R2017bR2024a: Specify Path to Parameter in Network Layer
Specify the path to a parameter in a networkLayer
using the parameterPath
argument.
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: United States.
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)