Cumulative Sum
Cumulative sum of channel, column, or row elements
Libraries:
DSP System Toolbox /
Math Functions /
Math Operations
Description
The Cumulative Sum block computes the cumulative sum along the specified dimension of the input or across time (running sum).
Ports
Input
In — Input signal
vector | matrix
Input, specified as a vector or as matrix inputs containing real or complex values.
This port is unnamed until you select a
non-None
value for the Reset
port
parameter.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| fixed point
Complex Number Support: Yes
Rst — Reset port
scalar
The optional reset port, Rst, accepts scalar
values, which can be any built-in Simulink® data type including boolean
. The rate
of the input to the Rst port must be the same or
slower than that of the input data signal. The sample time of the input
to the Rst port must be a positive integer multiple
of the input sample time.
This port is unnamed until you select a
non-None
value for the Reset
port
parameter.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| Boolean
Output
Out — Cumulative sum
vector | matrix
Cumulative sum of input, specified as a vector or a matrix.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| fixed point
Parameters
Main
Sum input along — Dimension to sum along
Channels (running
sum)
(default) | Columns
| Rows
Specify the dimension along which to compute the cumulative
summations. You can choose to sum along Channels (running
sum)
, Columns
, or
Rows
. For more information, see these
sections:
Input processing — Method to process the input
Columns as channels (frame
based)
(default) | Elements as channels (sample
based)
Specify how the block processes the input when computing the running sum along the channels of the input. You can set this parameter to one of these options:
Columns as channels (frame based)
— The block treats each column of the input as a separate channel.Elements as channels (sample based)
— The block treats each element of the input as a separate channel.
Dependencies
This parameter is available only when you set the Sum
input along
parameter to Channels
(running sum)
.
Reset port — Reset type
None
(default) | Rising edge
| Falling edge
| Either edge
| Non-zero sample
Determines the reset event that causes the block to reset the sum
along channels. The rate of the input to the Rst
port must be the same or slower than that of the
input data signal. The sample time of the input to the
Rst port must be a positive integer multiple of
the input sample time. For more information, see Resetting the Running Sum.
Dependencies
This parameter is available only when you set the Sum
input along
parameter to Channels
(running sum)
.
Data Types
Note
Floating-point inheritance takes precedence over the data type settings defined on this pane. When inputs are floating point, the block ignores these settings. All internal data types are floating point.
Rounding mode — Rounding mode
Floor
(default) | Ceiling
| Convergent
| Nearest
| Round
| Simplest
| Zero
Specify the rounding mode for fixed-point operations as one of the following:
Floor
Ceiling
Convergent
Nearest
Round
Simplest
Zero
For more details, see rounding mode.
Saturate on integer overflow — Saturate for fixed-point operation
off
(default) | on
When you select this parameter, the block saturates the result of its
fixed-point operation. When you clear this parameter, the block wraps
the result of its fixed-point operation. For details on
saturate
and wrap
, see overflow
mode for fixed-point operations.
Accumulator — Data type of accumulator
Inherit: Same as first
input
(default) | fixdt([],16,0)
Accumulator specifies the data type of the output of an accumulation operation in the Cumulative Sum block. For illustrations on how to use the accumulator data type in this block, see Fixed-Point Data Types.
Inherit: Same as input
— The block specifies the accumulator data type to be the same as the input data type.fixdt([],16,0)
— The block specifies an autosigned, binary-point, scaled, fixed-point data type with a word length of 16 bits and a fraction length of 0.
Alternatively, you can set the Accumulator data type by using the Data Type Assistant. Click the Show data type assistant button.
For more information, see Specify Data Types Using Data Type Assistant (Simulink).
Output — Data type of output
Inherit: Same as
accumulator
(default) | Inherit: Same as input
| fixdt([],16,0)
Output specifies the data type of the output of the Cumulative Sum block. For more information on the output data type, see Fixed-Point Data Types.
Inherit: Same as input
— The block specifies the output data type to be the same as the input data type.Inherit: Same as accumulator
— The block specifies the output data type to be the same as the accumulator data type.fixdt([],16,0)
— The block specifies an autosigned, binary-point, scaled, fixed-point data type with a word length of 16 bits and a fraction length of 0.
Alternatively, you can set the Output data type by using the Data Type Assistant. Click the Show data type assistant button.
For more information on the data type assistant, see Specify Data Types Using Data Type Assistant (Simulink).
Output Minimum — Minimum value the block can output
[]
(default) | scalar
Specify the minimum value the block can output. Simulink software uses this minimum value to perform:
Simulation range checking. See Specify Signal Ranges (Simulink).
Automatic scaling of fixed-point data types.
Output Maximum — Maximum value block can output
[]
(default) | scalar
Specify the maximum value the block can output. Simulink software uses this maximum value to perform:
Simulation range checking. See Specify Signal Ranges (Simulink).
Automatic scaling of fixed-point data types.
Lock data type settings against changes by the fixed-point tools — Prevent fixed-point tools from overriding data types
off
(default) | on
Select this parameter to prevent the fixed-point tools from overriding the data types you specify in the block dialog box.
Block Characteristics
Data Types |
|
Direct Feedthrough |
|
Multidimensional Signals |
|
Variable-Size Signals |
|
Zero-Crossing Detection |
|
More About
Computing the Running Sum Along Channels of the Input
When you set the Sum input
along
parameter to Channels (running sum)
,
the block computes the cumulative sum of the elements in each input channel. The
running sum of the current input takes into account the running sum of all previous
inputs. In this mode, you must also specify a value for the Input
processing
parameter.
When you set the Input processing parameter to:
Columns as channels (frame based)
–– The block computes the running sum along each column of the current input.Elements as channels (sample based)
–– The block computes a running sum for each element of the input across time.
Computing the Running Sum for Each Column of the Input
When you set the Input processing parameter to
Columns as channels (frame based)
, the block treats
each input column as an independent channel. As the following figure and equation
illustrate, the output has the following characteristics:
The first row of the first output is the same as the first row of the first input.
The first row of each subsequent output is the sum of the first row of the current input (time t), and the last row of the previous output (time t - Tf, where Tf is the frame period).
The output has the same size, dimension, data type, and complexity as the input.
Given an M-by-N matrix input, u, the output, y, is an M-by-N matrix whose first row has elements
Computing the Running Sum for Each Element of the Input
When you set the Input processing parameter to
Elements as channels (sample based)
, the block treats
each element of the input matrix as an independent channel. As the following figure
and equation illustrate, the output has these characteristics:
The first output is the same as the first input.
Each subsequent output is the sum of the current input (time t) and the previous output (time t - Ts, where Ts is the sample period).
The output has the same size, dimension, data type, and complexity as the input.
Given an M-by-N matrix input, u, the output, y, is an M-by-N matrix with the elements
Resetting the Running Sum
When you are computing the running sum, you can configure the block to reset the
running sum whenever it detects a reset event at the optional Rst
port. The rate of the input to the Rst port must be the same or
slower than that of the input data signal. The sample time of the input to the
Rst port must be a positive integer multiple of the input
sample time. The reset sample time must be a positive integer multiple of the input
sample time. The input to the Rst port can be
boolean
.
If a reset event occurs while the block is performing sample-based processing, the block initializes the current output to the values of the current input. If a reset event occurs while the block is performing frame-based processing, the block initializes the first row of the current output to the values in the first row of the current input.
The Reset
port
parameter specifies the reset event, which can be one of the
following:
None
disables the Rst port.Rising edge
— Triggers a reset operation when the Rst input does one of the following:Rises from a negative value to a positive value or zero
Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero
Falling edge
— Triggers a reset operation when the Rst input does one of the following:Falls from a positive value to a negative value or zero
Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero
Either edge
— Triggers a reset operation when the Rst input is aRising edge
orFalling edge
Non-zero sample
— Triggers a reset operation at each sample time that the Rst input is not zero
Note
When you run simulations in the Simulink
MultiTasking
mode, reset signals have a one-sample
latency. When the block detects a reset event, a one-sample delay occurs at the
reset port rate before the block applies the reset. For more information on
latency and the Simulink tasking modes, see Excess Algorithmic Delay (Tasking Latency) and Time-Based Scheduling and Code Generation (Simulink Coder).
Summing Along Columns
When you set the Sum input
along
parameter to Columns
, the block
computes the cumulative sum of each column of the input. In this mode, the current
cumulative sum is independent of the cumulative sums of previous inputs.
y = cumsum(u) % Equivalent MATLAB code
The output has the same size, dimension, data type, and complexity as the input. The mth output row is the sum of the first m input rows.
Given an M-by-N input, u, the output, y, is an M-by-N matrix whose jth column has elements
The block treats length-M unoriented vector inputs as M-by-1 column vectors when summing along columns.
Summing Along Rows
When you set the Sum input
along
parameter to Rows
, the block
computes the cumulative sum of the row elements. In this mode, the current
cumulative sum is independent of the cumulative sums of previous inputs.
y = cumsum(u,2) % Equivalent MATLAB code
The output has the same size, dimension, and data type as the input. The nth output column is the sum of the first n input columns.
Given an M-by-N input, u, the output, y, is an M-by-N matrix whose ith row has elements
When you sum along rows, the block treats length-N unoriented vector inputs as 1-by-N row vectors.
Fixed-Point Data Types
The following diagram shows the data types used within the Cumulative Sum block for fixed-point signals.
You can set the accumulator and output data types in the block dialog box.
Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
Generated code relies on the memcpy
or
memset
function (string.h
) under certain
conditions.
Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.
Version History
Introduced before R2006a
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)