lratiotest
Likelihood ratio test of model specification
Syntax
Description
returns the rejection decision from conducting a likelihood
ratio test of model specification using input
loglikelihood objective function evaluations at the input
unrestricted and restricted model parameter estimates, with input
degrees of freedom.h
= lratiotest(uLogL
,rLogL
,dof
)
If
uLogL
orrLogL
is a vector, then the other must be a scalar or vector of equal length.lratiotest(uLogL,rLogL,dof)
treats each element of a vector input as a separate test, and returns a vector of rejection decisions.If
uLogL
orrLogL
is a row vector, thenlratiotest(uLogL,rLogL,dof)
returns a row vector.
Examples
Input Arguments
Output Arguments
More About
Tips
Estimate unrestricted and restricted univariate linear time series models, such as
arima
orgarch
, or time series regression models (regARIMA
) usingestimate
. Estimate unrestricted and restricted VAR models (varm
) usingestimate
.The
estimate
functions return loglikelihood maxima, which you can use as inputs tolratiotest
.If you can easily compute both restricted and unrestricted parameter estimates, then use
lratiotest
. By comparison:waldtest
only requires unrestricted parameter estimates.lmtest
requires restricted parameter estimates.
Algorithms
lratiotest
performs multiple, independent tests when the unrestricted or restricted model loglikelihood maxima (uLogL
andrLogL
, respectively) is a vector.If
rLogL
is a vector anduLogL
is a scalar, thenlratiotest
“tests down” against multiple restricted models.If
uLogL
is a vector andrLogL
is a scalar, thenlratiotest
“tests up” against multiple unrestricted models.Otherwise,
lratiotest
compares model specifications pair-wise.
alpha
is nominal in that it specifies a rejection probability in the asymptotic distribution. The actual rejection probability is generally greater than the nominal significance.
References
[1] Davidson, R. and J. G. MacKinnon. Econometric Theory and Methods. Oxford, UK: Oxford University Press, 2004.
[2] Godfrey, L. G. Misspecification Tests in Econometrics. Cambridge, UK: Cambridge University Press, 1997.
[3] Greene, W. H. Econometric Analysis. 6th ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2008.
[4] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press, 1994.
Version History
Introduced before R2006a