Obtaining Efficient Portfolios for Target Returns
To obtain efficient portfolios that have targeted portfolio returns, the estimateFrontierByReturn
function accepts one or more target portfolios
returns and obtains efficient portfolios with the specified returns. For example, assume
that you have a universe of four assets where you want to obtain efficient portfolios
with target portfolio returns of 6%, 9%, and
12%:
m = [ 0.05; 0.1; 0.12; 0.18 ]; C = [ 0.0064 0.00408 0.00192 0; 0.00408 0.0289 0.0204 0.0119; 0.00192 0.0204 0.0576 0.0336; 0 0.0119 0.0336 0.1225 ]; p = Portfolio; p = setAssetMoments(p, m, C); p = setDefaultConstraints(p); pwgt = estimateFrontierByReturn(p, [0.06, 0.09, 0.12]); display(pwgt)
pwgt = 0.8772 0.5032 0.1293 0.0434 0.2488 0.4541 0.0416 0.0780 0.1143 0.0378 0.1700 0.3022
Sometimes, you can request a return for which no efficient portfolio exists. Based on the
previous example, suppose that you want a portfolio with a 5% return (which is the
return of the first asset). A portfolio that is fully invested in the first asset,
however, is inefficient. estimateFrontierByReturn
warns if your
target returns are outside the range of efficient portfolio returns and replaces it with
the endpoint portfolio of the efficient frontier closest to your target
return:
m = [ 0.05; 0.1; 0.12; 0.18 ]; C = [ 0.0064 0.00408 0.00192 0; 0.00408 0.0289 0.0204 0.0119; 0.00192 0.0204 0.0576 0.0336; 0 0.0119 0.0336 0.1225 ]; p = Portfolio; p = setAssetMoments(p, m, C); p = setDefaultConstraints(p); pwgt = estimateFrontierByReturn(p, [0.05, 0.09, 0.12]); display(pwgt)
Warning: One or more target return values are outside the feasible range [ 0.0590468, 0.18 ]. Will return portfolios associated with endpoints of the range for these values. > In Portfolio.estimateFrontierByReturn at 70 pwgt = 0.8891 0.5032 0.1293 0.0369 0.2488 0.4541 0.0404 0.0780 0.1143 0.0336 0.1700 0.3022
estimateFrontierLimits
and estimatePortReturn
(see Obtaining Endpoints of the Efficient Frontier and Obtaining Portfolio Risks and Returns).pret = estimatePortReturn(p, p.estimateFrontierLimits); display(pret)
pret = 0.0590 0.1800
If you have an initial portfolio, estimateFrontierByReturn
also returns
purchases and sales to get from your initial portfolio to the target portfolios on the
efficient frontier. For example, given an initial portfolio in pwgt0
,
to obtain purchases and sales with target returns of 6%, 9%, and
12%:
pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ]; p = setInitPort(p, pwgt0); [pwgt, pbuy, psell] = estimateFrontierByReturn(p, [0.06, 0.09, 0.12]); display(pwgt) display(pbuy) display(psell)
pwgt = 0.8772 0.5032 0.1293 0.0434 0.2488 0.4541 0.0416 0.0780 0.1143 0.0378 0.1700 0.3022 pbuy = 0.5772 0.2032 0 0 0 0.1541 0 0 0 0 0.0700 0.2022 psell = 0 0 0.1707 0.2566 0.0512 0 0.1584 0.1220 0.0857 0.0622 0 0
0
.
See Also
Portfolio
| estimateFrontier
| estimateFrontierLimits
| estimatePortMoments
| estimateFrontierByReturn
| estimatePortReturn
| estimateFrontierByRisk
| estimatePortRisk
| estimateFrontierByRisk
| estimateMaxSharpeRatio
| setSolver
Related Examples
- Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object
- Creating the Portfolio Object
- Working with Portfolio Constraints Using Defaults
- Estimate Efficient Frontiers for Portfolio Object
- Asset Allocation Case Study
- Portfolio Optimization Examples Using Financial Toolbox
- Portfolio Optimization with Semicontinuous and Cardinality Constraints
- Black-Litterman Portfolio Optimization Using Financial Toolbox
- Portfolio Optimization Using Factor Models
- Portfolio Optimization Using Social Performance Measure
- Diversify Portfolios Using Custom Objective