Main Content

# minus, -

## Syntax

``C = A - B``
``C = minus(A,B)``

## Description

example

````C = A - B` subtracts array `B` from array `A` by subtracting corresponding elements. The sizes of `A` and `B` must be the same or be compatible.If the sizes of `A` and `B` are compatible, then the two arrays implicitly expand to match each other. For example, if `A` or `B` is a scalar, then the scalar is combined with each element of the other array. Also, vectors with different orientations (one row vector and one column vector) implicitly expand to form a matrix.```
````C = minus(A,B)` is an alternate way to execute `A - B`, but is rarely used. It enables operator overloading for classes.```

## Examples

collapse all

Create an array, `A`, and subtract a scalar value from it.

```A = [2 1; 3 5]; C = A - 2```
```C = 2×2 0 -1 1 3 ```

The scalar is subtracted from each entry of `A`.

Create two arrays, `A` and `B`, and subtract the second, `B`, from the first, `A`.

```A = [1 0; 2 4]; B = [5 9; 2 1]; C = A - B```
```C = 2×2 -4 -9 0 3 ```

The elements of `B` are subtracted from the corresponding elements of `A`.

Use the syntax `-C` to negate the elements of `C`.

`-C`
```ans = 2×2 4 9 0 -3 ```

Create a 1-by-2 row vector and 3-by-1 column vector and subtract them.

```a = 1:2; b = (1:3)'; a - b```
```ans = 3×2 0 1 -1 0 -2 -1 ```

The result is a 3-by-2 matrix, where each (i,j) element in the matrix is equal to a`(j) - b(i)`:

`$\mathit{a}=\left[{\mathit{a}}_{1}\text{\hspace{0.17em}}{\mathit{a}}_{2}\right],\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\mathit{b}=\left[\begin{array}{c}{\mathit{b}}_{1}\\ {\mathit{b}}_{2}\\ {\mathit{b}}_{3}\end{array}\right],\text{\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}}\text{\hspace{0.17em}}\mathit{a}-\text{\hspace{0.17em}}\mathit{b}=\left[\begin{array}{cc}{\mathit{a}}_{1}-{\mathit{b}}_{1}& {\mathit{a}}_{2}-{\mathit{b}}_{1}\\ {\mathit{a}}_{1}-{\mathit{b}}_{2}& {\mathit{a}}_{2}-{\mathit{b}}_{2}\\ {\mathit{a}}_{1}-{\mathit{b}}_{3}& {\mathit{a}}_{2}-{\mathit{b}}_{3}\end{array}\right].$`

Create a matrix, `A`. Scale the elements in each column by subtracting the mean.

`A = [1 9 3; 2 7 8]`
```A = 2×3 1 9 3 2 7 8 ```
`A - mean(A)`
```ans = 2×3 -0.5000 1.0000 -2.5000 0.5000 -1.0000 2.5000 ```

## Input Arguments

collapse all

Operands, specified as scalars, vectors, matrices, or multidimensional arrays. Inputs `A` and `B` must either be the same size or have sizes that are compatible (for example, `A` is an `M`-by-`N` matrix and `B` is a scalar or `1`-by-`N` row vector). For more information, see Compatible Array Sizes for Basic Operations.

• Operands with an integer data type cannot be complex.

• If one input is a `datetime` array, `duration` array, or `calendarDuration` array, then numeric values in the other input are treated as a number of 24-hour days.

Data Types: `single` | `double` | `int8` | `int16` | `int32` | `int64` | `uint8` | `uint16` | `uint32` | `uint64` | `logical` | `char` | `datetime` | `duration` | `calendarDuration`
Complex Number Support: Yes

## Compatibility Considerations

expand all

Behavior changed in R2016b

Behavior changed in R2020b

## See Also

### Topics

Introduced before R2006a

Download ebook