# stairs

Stairstep graph

## Syntax

``stairs(Y)``
``stairs(X,Y)``
``stairs(___,LineSpec)``
``stairs(tbl,yvar)``
``stairs(tbl,xvar,yvar)``
``stairs(___,Name,Value)``
``stairs(ax,___)``
``h = stairs(___)``
``````[xb,yb] = stairs(___)``````

## Description

### Vector and Matrix Data

example

````stairs(Y)` draws a stairstep graph of the elements in `Y`.If `Y` is a vector, then `stairs` draws one line.If `Y` is a matrix, then `stairs` draws one line per matrix column.```

example

````stairs(X,Y)` plots the elements in `Y` at the locations specified by `X`. The inputs `X` and `Y` must be vectors or matrices of the same size. Additionally, `X` can be a row or column vector and `Y` must be a matrix with `length(X)` rows. ```

example

````stairs(___,LineSpec)` specifies a line style, marker symbol, and color. For example, `":*r"` specifies a dotted red line with asterisk markers. Use this option with any of the input argument combinations in the previous syntaxes.```

### Table Data

example

````stairs(tbl,yvar)` plots the specified variable from the table against the row indices of the table. If the table is a timetable, the specified variable is plotted against the row times of the timetable. To plot one set of y-values, specify one variable for `yvar`. To plot multiple sets of y-values, specify multiple variables for `yvar`. (since R2022b)```

example

````stairs(tbl,xvar,yvar)` plots the variables `xvar` and `yvar` from the table `tbl`. You can specify one or multiple variables for `xvar` and `yvar`. If both arguments specify multiple variables, they must specify the same number of variables. (since R2022b)```

example

````stairs(___,Name,Value)` modifies the stairstep chart using one or more name-value pair arguments. For example, `"Marker","o","MarkerSize",8` specifies 8 point circle markers.```

example

````stairs(ax,___)` plots into the axes specified by `ax` instead of into the current axes (`gca`). The option, `ax`, can precede any of the input argument combinations in the previous syntaxes.```

example

````h = stairs(___)` returns one or more `Stair` objects. Use `h` to make changes to properties of a specific `Stair` object after it is created. ```

example

``````[xb,yb] = stairs(___)``` does not create a plot, but returns matrices `xb` and `yb` of the same size, such that `plot(xb,yb)` plots the stairstep graph.This syntax does not support the table and table variable arguments.```

## Examples

collapse all

Create a stairstep plot of sine evaluated at 40 equally spaced values between 0 and $4\pi$.

```X = linspace(0,4*pi,40); Y = sin(X); figure stairs(Y)```

The length of `Y` automatically determines and generates the x-axis scale.

Create a stairstep plot of two cosine functions evaluated at 50 equally spaced values between 0 and $4\pi$.

```X = linspace(0,4*pi,50)'; Y = [0.5*cos(X), 2*cos(X)]; figure stairs(Y)```

The number of rows in `Y` automatically determines and generates the x-axis scale.

Create a stairstep plot of a sine wave evaluated at equally spaced values between 0 and $4\pi$. Specify the set of x-values for the plot.

```X = linspace(0,4*pi,40); Y = sin(X); figure stairs(X,Y)```

The entries in `Y` are plotted against the corresponding entries in `X`.

Create a stairstep plot of two cosine waves evaluated at equally spaced values between 0 and $4\pi$. Specify the set of x-values for the plot.

```X = linspace(0,4*pi,50)'; Y = [0.5*cos(X), 2*cos(X)]; figure stairs(X,Y)```

The first vector input, `X`, determines the x-axis positions for both data series.

Create a stairstep plot of two sine waves evaluated at different values. Specify a unique set of x-values for plotting each data series.

```x1 = linspace(0,2*pi)'; x2 = linspace(0,pi)'; X = [x1,x2]; Y = [sin(5*x1),exp(x2).*sin(5*x2)]; figure stairs(X,Y)```

Each column of `X` is plotted against the corresponding column of `Y`.

Create a stairstep plot and set the line style to a dot-dashed line, the marker symbol to circles, and the color to red.

```X = linspace(0,4*pi,20); Y = sin(X); figure stairs(Y, '-.or')```

Create a stairstep plot and set the line width to 2, the marker symbols to diamonds, and the marker face color to cyan using `Name,Value` pair arguments.

```X = linspace(0,4*pi,20); Y = sin(X); figure stairs(Y,'LineWidth',2,'Marker','d','MarkerFaceColor','c')```

Since R2022b

A convenient way to plot data from a table is to pass the table to the `stairs` function and specify the variables to plot.

Read the first 100 rows and 7 columns of `weather.csv` as a timetable `tbl`. Then display the first three rows of the table.

```tbl = readtimetable("weather.csv","Range",[1 1 101 7]); head(tbl,3)```
``` Time WindDirection WindSpeed Humidity Temperature RainInchesPerMinute CumulativeRainfall ____________________ _____________ _________ ________ ___________ ___________________ __________________ 25-Oct-2021 00:00:09 46 1 84 49.2 0 0 25-Oct-2021 00:01:09 45 1.6 84 49.2 0 0 25-Oct-2021 00:02:09 36 2.2 84 49.2 0 0 ```

Plot the `Time` variable on the x-axis and the `CumulativeRainfall` variable on the y-axis. Then use the `axis padded` command so that the line and the plot box do not overlap.

Return the `Stair` object as `h`. Notice that the axis labels match the variable names.

```h = stairs(tbl,"Time","CumulativeRainfall"); axis padded```

Change the color of the line to purple by setting the `Color` property.

`h.Color = [0.5 0 0.8];`

Since R2022b

Create vectors `x`, `y1`, and `y2`, and use them to create a table. Plot the `y1` and y2 variables against the `x` variable. Use the `axis padded` command so that the line and the plot box do not overlap.

Add a legend, and notice that the legend labels match the variable names.

```x = linspace(0,6,20); y1 = cos(x); y2 = sin(x); tbl = table(x,y1,y2); stairs(tbl,"x",["y1","y2"]); % Pad x- and y-axes, and add legend axis padded legend```

Alternatively, you can omit the `x` variable and plot the `y1` and `y2` variables against the row indices of the table.

```stairs(tbl,["y1","y2"]); axis padded legend```

Since R2019b

You can display a tiling of plots using the `tiledlayout` and `nexttile` functions. Call the `tiledlayout` function to create a 2-by-1 tiled chart layout. Call the `nexttile` function to create the axes objects `ax1` and `ax2`. Create separate stairstep plots in the axes by specifying the axes object as the first argument to `stairs`.

```x = linspace(0,2*pi); y1 = 5*sin(x); y2 = sin(5*x); tiledlayout(2,1) % Top plot ax1 = nexttile; stairs(ax1,x,y1) % Bottom plot ax2 = nexttile; stairs(ax2,x,y2)```

Create a stairstep plot of two data series and return the two stair objects.

```X = linspace(0,1,30)'; Y = [cos(10*X), exp(X).*sin(10*X)]; h = stairs(X,Y);```

Use small circle markers for the first data series. Use magenta filled circles for the second series. Use dot notation to set properties.

```h(1).Marker = 'o'; h(1).MarkerSize = 4; h(2).Marker = 'o'; h(2).MarkerFaceColor = 'm';```

Evaluate two cosine functions at 50 equally spaced values between 0 and $4\pi$ and create a stairstep plot using `plot`.

```X = linspace(0,4*pi,50)'; Y = [0.5*cos(X), 2*cos(X)]; [xb,yb] = stairs(X,Y);```

`stairs` returns two matrices of the same size, `xb` and `yb`, but no plot.

Use `plot` to create the stairstep plot with `xb` and `yb`.

```figure plot(xb,yb)```

## Input Arguments

collapse all

y values, specified as a vector or matrix. When `Y` is a vector, `stairs` creates one stair object. When `Y` is a matrix, `stairs` draws one line per matrix column and creates a separate stair object for each column.

Data Types: `single` | `double` | `int8` | `int16` | `int32` | `int64` | `uint8` | `uint16` | `uint32` | `uint64` | `categorical` | `datetime` | `duration`

x values, specified as a vector or matrix. When `Y` is a vector, `X` must be a vector of the same size. When `Y` is a matrix, `X` must be a matrix of the same size, or a vector whose length equals the number of rows in `Y`.

Data Types: `single` | `double` | `int8` | `int16` | `int32` | `int64` | `uint8` | `uint16` | `uint32` | `uint64` | `categorical` | `datetime` | `duration`

Line style, marker, and color, specified as a string scalar or character vector containing symbols. The symbols can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, if you omit the line style and specify the marker, then the plot shows only the marker and no line.

Example: `"--or"` is a red dashed line with circle markers.

Line StyleDescriptionResulting Line
`"-"`Solid line

`"--"`Dashed line

`":"`Dotted line

`"-."`Dash-dotted line

MarkerDescriptionResulting Marker
`"o"`Circle

`"+"`Plus sign

`"*"`Asterisk

`"."`Point

`"x"`Cross

`"_"`Horizontal line

`"|"`Vertical line

`"square"`Square

`"diamond"`Diamond

`"^"`Upward-pointing triangle

`"v"`Downward-pointing triangle

`">"`Right-pointing triangle

`"<"`Left-pointing triangle

`"pentagram"`Pentagram

`"hexagram"`Hexagram

Color NameShort NameRGB TripletAppearance
`"red"``"r"``[1 0 0]`

`"green"``"g"``[0 1 0]`

`"blue"``"b"``[0 0 1]`

`"cyan"` `"c"``[0 1 1]`

`"magenta"``"m"``[1 0 1]`

`"yellow"``"y"``[1 1 0]`

`"black"``"k"``[0 0 0]`

`"white"``"w"``[1 1 1]`

Source table containing the data to plot, specified as a table or a timetable.

Table variables containing the y-coordinates, specified using one of the indexing schemes from the table.

Indexing SchemeExamples

Variable names:

• `"A"` or `'A'` — A variable named `A`

• `["A","B"]` or `{'A','B'}` — Two variables named `A` and `B`

• `"Var"+digitsPattern(1)` — Variables named `"Var"` followed by a single digit

Variable index:

• An index number that refers to the location of a variable in the table.

• A vector of numbers.

• A logical vector. Typically, this vector is the same length as the number of variables, but you can omit trailing `0` or `false` values.

• `3` — The third variable from the table

• `[2 3]` — The second and third variables from the table

• `[false false true]` — The third variable

Variable type:

• `vartype("categorical")` — All the variables containing categorical values

The table variables you specify can contain numeric, categorical, datetime, or duration values. If `xvar` and `yvar` both specify multiple variables, the number of variables must be the same.

Example: `stairs(tbl,"x",["y1","y2"])` specifies the table variables named `y1` and `y2` for the y-coordinates.

Example: `stairs(tbl,"x",2)` specifies the second variable for the y-coordinates.

Example: `stairs(tbl,"x",vartype("numeric"))` specifies all numeric variables for the y-coordinates.

Table variables containing the x-coordinates, specified using one of the indexing schemes from the table.

Indexing SchemeExamples

Variable names:

• `"A"` or `'A'` — A variable named `A`

• `["A","B"]` or `{'A','B'}` — Two variables named `A` and `B`

• `"Var"+digitsPattern(1)` — Variables named `"Var"` followed by a single digit

Variable index:

• An index number that refers to the location of a variable in the table.

• A vector of numbers.

• A logical vector. Typically, this vector is the same length as the number of variables, but you can omit trailing `0` or `false` values.

• `3` — The third variable from the table

• `[2 3]` — The second and third variables from the table

• `[false false true]` — The third variable

Variable type:

• `vartype("categorical")` — All the variables containing categorical values

The table variables you specify can contain numeric, categorical, datetime, or duration values. If `xvar` and `yvar` both specify multiple variables, the number of variables must be the same.

Example: `stairs(tbl,["x1","x2"],"y")` specifies the table variables named `x1` and `x2` for the x-coordinates.

Example: `stairs(tbl,2,"y")` specifies the second variable for the x-coordinates.

Example: `stairs(tbl,vartype("numeric"),"y")` specifies all numeric variables for the x-coordinates.

`Axes` object. If you do not specify the axes, then `stairs` plots into the current axes.

### Name-Value Arguments

Specify optional pairs of arguments as `Name1=Value1,...,NameN=ValueN`, where `Name` is the argument name and `Value` is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose `Name` in quotes.

Example: `"Marker","s","MarkerFaceColor","red"` plots the stairstep graph with red square markers.

The properties listed here are only a subset. For a complete list, see Stair Properties.

Line style, specified as one of the options listed in this table.

Line StyleDescriptionResulting Line
`"-"`Solid line

`"--"`Dashed line

`":"`Dotted line

`"-."`Dash-dotted line

`"none"`No lineNo line

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the line has markers, then the line width also affects the marker edges.

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is less than the width of a pixel on your system, the line displays as one pixel wide.

Line color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range `[0,1]`, for example, ```[0.4 0.6 0.7]```.

• A hexadecimal color code is a string scalar or character vector that starts with a hash symbol (`#`) followed by three or six hexadecimal digits, which can range from `0` to `F`. The values are not case sensitive. Therefore, the color codes `"#FF8800"`, `"#ff8800"`, `"#F80"`, and `"#f80"` are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.

Color NameShort NameRGB TripletHexadecimal Color CodeAppearance
`"red"``"r"``[1 0 0]``"#FF0000"`

`"green"``"g"``[0 1 0]``"#00FF00"`

`"blue"``"b"``[0 0 1]``"#0000FF"`

`"cyan"` `"c"``[0 1 1]``"#00FFFF"`

`"magenta"``"m"``[1 0 1]``"#FF00FF"`

`"yellow"``"y"``[1 1 0]``"#FFFF00"`

`"black"``"k"``[0 0 0]``"#000000"`

`"white"``"w"``[1 1 1]``"#FFFFFF"`

`"none"`Not applicableNot applicableNot applicableNo color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB® uses in many types of plots.

`[0 0.4470 0.7410]``"#0072BD"`

`[0.8500 0.3250 0.0980]``"#D95319"`

`[0.9290 0.6940 0.1250]``"#EDB120"`

`[0.4940 0.1840 0.5560]``"#7E2F8E"`

`[0.4660 0.6740 0.1880]``"#77AC30"`

`[0.3010 0.7450 0.9330]``"#4DBEEE"`

`[0.6350 0.0780 0.1840]``"#A2142F"`

Example: `"blue"`

Example: ```[0 0 1]```

Example: `"#0000FF"`

Marker symbol, specified as one of the values listed in this table. By default, the object does not display markers. Specifying a marker symbol adds markers at each data point or vertex.

MarkerDescriptionResulting Marker
`"o"`Circle

`"+"`Plus sign

`"*"`Asterisk

`"."`Point

`"x"`Cross

`"_"`Horizontal line

`"|"`Vertical line

`"square"`Square

`"diamond"`Diamond

`"^"`Upward-pointing triangle

`"v"`Downward-pointing triangle

`">"`Right-pointing triangle

`"<"`Left-pointing triangle

`"pentagram"`Pentagram

`"hexagram"`Hexagram

`"none"`No markersNot applicable

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

Marker outline color, specified as `"auto"`, an RGB triplet, a hexadecimal color code, a color name, or a short name. The default value of `"auto"` uses the same color as the `Color` property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range `[0,1]`, for example, ```[0.4 0.6 0.7]```.

• A hexadecimal color code is a string scalar or character vector that starts with a hash symbol (`#`) followed by three or six hexadecimal digits, which can range from `0` to `F`. The values are not case sensitive. Therefore, the color codes `"#FF8800"`, `"#ff8800"`, `"#F80"`, and `"#f80"` are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.

Color NameShort NameRGB TripletHexadecimal Color CodeAppearance
`"red"``"r"``[1 0 0]``"#FF0000"`

`"green"``"g"``[0 1 0]``"#00FF00"`

`"blue"``"b"``[0 0 1]``"#0000FF"`

`"cyan"` `"c"``[0 1 1]``"#00FFFF"`

`"magenta"``"m"``[1 0 1]``"#FF00FF"`

`"yellow"``"y"``[1 1 0]``"#FFFF00"`

`"black"``"k"``[0 0 0]``"#000000"`

`"white"``"w"``[1 1 1]``"#FFFFFF"`

`"none"`Not applicableNot applicableNot applicableNo color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.

`[0 0.4470 0.7410]``"#0072BD"`

`[0.8500 0.3250 0.0980]``"#D95319"`

`[0.9290 0.6940 0.1250]``"#EDB120"`

`[0.4940 0.1840 0.5560]``"#7E2F8E"`

`[0.4660 0.6740 0.1880]``"#77AC30"`

`[0.3010 0.7450 0.9330]``"#4DBEEE"`

`[0.6350 0.0780 0.1840]``"#A2142F"`

Marker fill color, specified as `"auto"`, an RGB triplet, a hexadecimal color code, a color name, or a short name. The `"auto"` option uses the same color as the `Color` property of the parent axes. If you specify `"auto"` and the axes plot box is invisible, the marker fill color is the color of the figure.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range `[0,1]`, for example, ```[0.4 0.6 0.7]```.

• A hexadecimal color code is a string scalar or character vector that starts with a hash symbol (`#`) followed by three or six hexadecimal digits, which can range from `0` to `F`. The values are not case sensitive. Therefore, the color codes `"#FF8800"`, `"#ff8800"`, `"#F80"`, and `"#f80"` are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.

Color NameShort NameRGB TripletHexadecimal Color CodeAppearance
`"red"``"r"``[1 0 0]``"#FF0000"`

`"green"``"g"``[0 1 0]``"#00FF00"`

`"blue"``"b"``[0 0 1]``"#0000FF"`

`"cyan"` `"c"``[0 1 1]``"#00FFFF"`

`"magenta"``"m"``[1 0 1]``"#FF00FF"`

`"yellow"``"y"``[1 1 0]``"#FFFF00"`

`"black"``"k"``[0 0 0]``"#000000"`

`"white"``"w"``[1 1 1]``"#FFFFFF"`

`"none"`Not applicableNot applicableNot applicableNo color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.

`[0 0.4470 0.7410]``"#0072BD"`

`[0.8500 0.3250 0.0980]``"#D95319"`

`[0.9290 0.6940 0.1250]``"#EDB120"`

`[0.4940 0.1840 0.5560]``"#7E2F8E"`

`[0.4660 0.6740 0.1880]``"#77AC30"`

`[0.3010 0.7450 0.9330]``"#4DBEEE"`

`[0.6350 0.0780 0.1840]``"#A2142F"`

## Output Arguments

collapse all

`Stair` objects. These are unique identifiers, which you can use to query and modify the properties of a specific `Stair` object after it is created.

x values for use with `plot`, returned as a vector or matrix. `xb` contains the appropriate values such that `plot(xb,yb)` creates the stairstep graph.

y values for use with `plot`, returned as a vector or matrix. `yb` contains the appropriate values such that `plot(xb,yb)` creates the stairstep graph.

## Version History

Introduced before R2006a

expand all