Note: This page has been translated by MathWorks. Click here to see

To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

Estimates probability of default using Merton model

```
[PD,DD,A,Sa]
= mertonmodel(Equity,EquityVol,Liability,Rate)
```

```
[PD,DD,A,Sa]
= mertonmodel(___,Name,Value)
```

Unlike the time series method (see `mertonByTimeSeries`

),
when using `mertonmodel`

, the equity volatility (*σ*_{E})
is provided. Given equity (*E*), liability (*L*),
risk-free interest rate (*r*), asset drift (*μ*_{A}),
and maturity (*T*), you use a `2`

-by-`2`

nonlinear
system of equations. `mertonmodel`

solves for the
asset value (*A*) and asset volatility (*σ*_{A})
as follows:

$$E=AN({d}_{1})-L{e}^{-rT}N({d}_{2})$$

$${\sigma}_{E}=\frac{A}{E}N({d}_{1}){\sigma}_{A}$$

where *N* is the cumulative normal distribution, *d _{1}* and

$${d}_{1}=\frac{\mathrm{ln}\left(\frac{A}{L}\right)+(r+0.5{\sigma}_{A}^{2})T}{{\sigma}_{A}\sqrt{T}}$$

$${d}_{2}={d}_{1}-{\sigma}_{A}\sqrt{T}$$

The formulae for the distance-to-default (*DD*)
and default probability (*PD*) are:

$$DD=\frac{\mathrm{ln}\left(\frac{A}{L}\right)+\left({\mu}_{A}-0.5{\sigma}_{A}^{2}\right)T}{{\sigma}_{A}\sqrt{T}}$$

$$PD=1-N(DD)$$

[1] Zielinski, T. *Merton's and KMV Models In Credit Risk
Management.*

[2] Löffler, G. and Posch, P.N. *Credit Risk Modeling
Using Excel and VBA.* Wiley Finance, 2011.

[3] Kim, I.J., Byun, S.J, Hwang, S.Y. *An Iterative Method
for Implementing Merton.*

[4] Merton, R. C. “On the Pricing of Corporate Debt: The
Risk Structure of Interest Rates.” *Journal of Finance.* Vol.
29. pp. 449–470.