# bohmanwin

## Syntax

w = bohmanwin(L)

## Description

example

w = bohmanwin(L) returns an L-point Bohman window in w.

## Examples

collapse all

Compute a 64-point Bohman window. Display the result using wvtool.

L = 64; bw = bohmanwin(L); wvtool(bw)

## Input Arguments

collapse all

Window length, specified as a positive integer.

Data Types: single | double

## Output Arguments

collapse all

Bohman window, returned as a column vector.

## Algorithms

A Bohman window is the convolution of two half-duration cosine lobes. In the time domain, it is the product of a triangular window and a single cycle of a cosine with a term added to set the first derivative to zero at the boundary. Bohman windows fall off as 1/w4.The equation for computing the coefficients of a Bohman window is

$w\left(x\right)=\left(1-|x|\right)\mathrm{cos}\left(\pi |x|\right)+\frac{1}{\pi }\mathrm{sin}\left(\pi |x|\right),\text{ }-1\le x\le 1$

where x is a length-L vector of linearly spaced values generated using linspace. The first and last elements of the Bohman window are forced to be identically zero.

## References

[1] harris, fredric j. “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform.” Proceedings of the IEEE®. Vol. 66, January 1978, pp. 51–83.

## Version History

Introduced before R2006a