summary
Return structure array that contains estimated values and fit quality statistics
Description
returns a structure array stats
= summary(resultsObj
)stats
that contains estimated values
and estimation statistics.
Examples
Estimate Two-Compartment PK Parameters
Load the sample data set.
load data10_32R.mat gData = groupedData(data); gData.Properties.VariableUnits = ["","hour","milligram/liter","milligram/liter"];
Create a two-compartment PK model.
pkmd = PKModelDesign; pkc1 = addCompartment(pkmd,"Central"); pkc1.DosingType = "Infusion"; pkc1.EliminationType = "linear-clearance"; pkc1.HasResponseVariable = true; pkc2 = addCompartment(pkmd,"Peripheral"); model = construct(pkmd); configset = getconfigset(model); configset.CompileOptions.UnitConversion = true; responseMap = ["Drug_Central = CentralConc","Drug_Peripheral = PeripheralConc"];
Provide model parameters to estimate.
paramsToEstimate = ["log(Central)","log(Peripheral)","Q12","Cl_Central"]; estimatedParam = estimatedInfo(paramsToEstimate,'InitialValue',[1 1 1 1]);
Assume every individual receives an infusion dose at time = 0, with a total infusion amount of 100 mg at a rate of 50 mg/hour.
dose = sbiodose("dose","TargetName","Drug_Central"); dose.StartTime = 0; dose.Amount = 100; dose.Rate = 50; dose.AmountUnits = "milligram"; dose.TimeUnits = "hour"; dose.RateUnits = "milligram/hour";
Estimate model parameters. By default, the function estimates a set of parameter for each individual (unpooled fit).
fitResults = sbiofit(model,gData,responseMap,estimatedParam,dose);
Plot the results.
plot(fitResults);
Plot all groups in one plot.
plot(fitResults,"PlotStyle","one axes");
Change some axes properties.
s = struct; s.Properties.XGrid = "on"; s.Properties.YGrid = "on"; plot(fitResults,"PlotStyle","one axes","AxesStyle",s);
Compare the model predictions to the actual data.
plotActualVersusPredicted(fitResults)
Use boxplot
to show the variation of estimated model parameters.
boxplot(fitResults)
Plot the distribution of residuals. This normal probability plot shows the deviation from normality and the skewness on the right tail of the distribution of residuals. The default (constant) error model might not be the correct assumption for the data being fitted.
plotResidualDistribution(fitResults)
Plot residuals for each response using the model predictions on x-axis.
plotResiduals(fitResults,"Predictions")
Get the summary of the fit results. stats.Name
contains the name for each table from stats.Table
, which contains a list of tables with estimated parameter values and fit quality statistics.
stats = summary(fitResults); stats.Name
ans = 'Unpooled Parameter Estimates'
ans = 'Statistics'
ans = 'Unpooled Beta'
ans = 'Residuals'
ans = 'Covariance Matrix'
ans = 'Error Model'
stats.Table
ans=3×9 table
Group Central Estimate Central StandardError Peripheral Estimate Peripheral StandardError Q12 Estimate Q12 StandardError Cl_Central Estimate Cl_Central StandardError
_____ ________________ _____________________ ___________________ ________________________ ____________ _________________ ___________________ ________________________
{'1'} 1.422 0.12334 1.5619 0.36355 0.47163 0.15196 0.5291 0.036978
{'2'} 1.8322 0.019672 5.3364 0.65327 0.2764 0.030799 0.86035 0.026257
{'3'} 1.6657 0.038529 5.5632 0.37063 0.78361 0.058657 1.0233 0.027311
ans=3×7 table
Group AIC BIC LogLikelihood DFE MSE SSE
_____ _______ _______ _____________ ___ ________ _______
{'1'} 60.961 64.051 -26.48 12 2.138 25.656
{'2'} -7.8379 -4.7475 7.9189 12 0.029012 0.34814
{'3'} -1.4336 1.6567 4.7168 12 0.043292 0.5195
ans=3×9 table
Group Central Estimate Central StandardError Peripheral Estimate Peripheral StandardError Q12 Estimate Q12 StandardError Cl_Central Estimate Cl_Central StandardError
_____ ________________ _____________________ ___________________ ________________________ ____________ _________________ ___________________ ________________________
{'1'} 0.35208 0.086736 0.44589 0.23277 0.47163 0.15196 0.5291 0.036978
{'2'} 0.60551 0.010737 1.6746 0.12242 0.2764 0.030799 0.86035 0.026257
{'3'} 0.51027 0.02313 1.7162 0.066621 0.78361 0.058657 1.0233 0.027311
ans=24×4 table
ID Time CentralConc PeripheralConc
__ ____ ___________ ______________
1 0 0 0
1 1 0.10646 -0.74394
1 4 1.3745 1.2726
1 8 -0.68825 -4.2435
1 12 0.67383 0.21806
1 18 0.88823 1.0269
1 24 0.48941 0.66755
1 36 0.13632 0.22948
2 0 0 0
2 1 -0.026731 -0.058311
2 4 -0.033299 -0.20544
2 8 -0.20466 0.20696
2 12 -0.12223 0.045409
2 18 0.041224 0.33883
2 24 -0.059498 0.0036257
2 36 -0.051645 0.27616
⋮
ans=12×6 table
Group Parameters log(Central) log(Peripheral) Q12 Cl_Central
_____ ___________________ ____________ _______________ ___________ ___________
{'1'} {'log(Central)' } 0.015213 -0.022539 -0.0086672 0.001159
{'1'} {'log(Peripheral)'} -0.022539 0.13217 0.045746 -0.0073135
{'1'} {'Q12' } -0.0086672 0.045746 0.023092 -0.0021484
{'1'} {'Cl_Central' } 0.001159 -0.0073135 -0.0021484 0.0013674
{'2'} {'log(Central)' } 0.00038701 -0.002161 -0.00010177 9.7448e-05
{'2'} {'log(Peripheral)'} -0.002161 0.42676 0.019101 -0.015755
{'2'} {'Q12' } -0.00010177 0.019101 0.00094857 -0.00073328
{'2'} {'Cl_Central' } 9.7448e-05 -0.015755 -0.00073328 0.00068942
{'3'} {'log(Central)' } 0.0014845 -0.0054648 -0.0013216 0.00016639
{'3'} {'log(Peripheral)'} -0.0054648 0.13737 0.016903 -0.0072722
{'3'} {'Q12' } -0.0013216 0.016903 0.0034406 -0.00082538
{'3'} {'Cl_Central' } 0.00016639 -0.0072722 -0.00082538 0.00074587
ans=3×5 table
Group Response ErrorModel a b
_____ __________ ____________ _______ ___
{'1'} {0x0 char} {'constant'} 1.2663 NaN
{'2'} {0x0 char} {'constant'} 0.14751 NaN
{'3'} {0x0 char} {'constant'} 0.18019 NaN
Input Arguments
resultsObj
— Estimation results
OptimResults
object | NLINResults
object | vector of results objects
Estimation results, specified as an OptimResults object
or
NLINResults object
, or
vector of results objects which contains estimation results from running
sbiofit
.
Output Arguments
stats
— Summary statistics
structure array
Summary statistics, returned as a structure array.
Each structure contains the fields:
Name
— Name of a fit statisticsTable
— Table containing values of the corresponding fit statistics
Version History
Introduced in R2014aR2020a: summary
returns structure array instead of figure
The summary function now returns a structure array instead of a figure.
See Also
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)