Main Content

Gamma Distribution

Fit, evaluate, and generate random samples from gamma distribution

Statistics and Machine Learning Toolbox™ offers several ways to work with the gamma distribution.

  • Create a probability distribution object GammaDistribution by fitting a probability distribution to sample data or by specifying parameter values. Then, use object functions to evaluate the distribution, generate random numbers, and so on.

  • Work with the gamma distribution interactively by using the Distribution Fitter app. You can export an object from the app and use the object functions.

  • Use distribution-specific functions with specified distribution parameters. The distribution-specific functions can accept parameters of multiple gamma distributions.

  • Use generic distribution functions (cdf, icdf, pdf, random) with a specified distribution name ('Gamma') and parameters.

To learn about the gamma distribution, see Gamma Distribution.

Objects

GammaDistributionGamma probability distribution object

Apps

Distribution FitterFit probability distributions to data

Functions

expand all

Create GammaDistribution Object

makedistCreate probability distribution object
fitdistFit probability distribution object to data

Work with GammaDistribution Object

cdfCumulative distribution function
icdfInverse cumulative distribution function
iqrInterquartile range
meanMean of probability distribution
medianMedian of probability distribution
negloglikNegative loglikelihood of probability distribution
paramciConfidence intervals for probability distribution parameters
pdfProbability density function
proflikProfile likelihood function for probability distribution
randomRandom numbers
stdStandard deviation of probability distribution
truncateTruncate probability distribution object
varVariance of probability distribution
gamcdfGamma cumulative distribution function
gampdfGamma probability density function
gaminvGamma inverse cumulative distribution function
gamlikeGamma negative log-likelihood
gamstatGamma mean and variance
gamfitGamma parameter estimates
gamrndGamma random numbers
randgGamma random numbers with unit scale
mleMaximum likelihood estimates
mlecovAsymptotic covariance of maximum likelihood estimators
distributionFitterOpen Distribution Fitter app
histfitHistogram with a distribution fit
Probability Distribution FunctionInteractive density and distribution plots
qqplotQuantile-quantile plot
randtoolInteractive random number generation

Topics

Gamma Distribution

The gamma distribution models sums of exponentially distributed random variables.