nlinfit
Nonlinear regression
Syntax
Description
returns
a vector of estimated coefficients for the nonlinear regression of
the responses in beta = nlinfit(X,Y,modelfun,beta0)Y on the predictors in X using
the model specified by modelfun. The coefficients
are estimated using iterative least squares estimation, with initial
values specified by beta0.
specifies
options using one or more name-value arguments in addition to any of the input argument
combinations in the previous syntaxes. For example, you can set observation weights and
specify a nonconstant error model.beta = nlinfit(___,Name=Value)
[ additionally returns the residuals, beta,R,J,CovB,MSE,ErrorModelInfo]
= nlinfit(___)R,
the Jacobian of modelfun, J,
the estimated variance-covariance matrix for the estimated coefficients, CovB,
an estimate of the variance of the error term, MSE,
and a structure containing details about the error model, ErrorModelInfo.
Examples
Input Arguments
Name-Value Arguments
Output Arguments
More About
Tips
To produce error estimates on predictions, use the optional output arguments
R,J,CovB, orMSEas inputs tonlpredci.To produce error estimates on the estimated coefficients,
beta, use the optional output argumentsR,J,CovB, orMSEas inputs tonlparci.If you use the robust fitting option,
RobustWgtFun, you must useCovB—and might needMSE—as inputs tonlpredciornlparcito ensure that the confidence intervals take the robust fit properly into account.
Algorithms
nlinfittreatsNaNvalues inYormodelfun(beta0,X)as missing data, and ignores the corresponding observations.For nonrobust estimation,
nlinfituses the Levenberg-Marquardt nonlinear least squares algorithm [1].For robust estimation,
nlinfituses the algorithm of Iteratively Reweighted Least Squares ([2], [3]). At each iteration, the robust weights are recalculated based on each observation’s residual from the previous iteration. These weights downweight outliers, so that their influence on the fit is decreased. Iterations continue until the weights converge.When you specify a function handle for observation weights, the weights depend on the fitted model. In this case,
nlinfituses an iterative generalized least squares algorithm to fit the nonlinear regression model.
References
[1] Seber, G. A. F., and C. J. Wild. Nonlinear Regression. Hoboken, NJ: Wiley-Interscience, 2003.
[2] DuMouchel, W. H., and F. L. O'Brien. “Integrating a Robust Option into a Multiple Regression Computing Environment.” Computer Science and Statistics: Proceedings of the 21st Symposium on the Interface. Alexandria, VA: American Statistical Association, 1989.
[3] Holland, P. W., and R. E. Welsch. “Robust Regression Using Iteratively Reweighted Least-Squares.” Communications in Statistics: Theory and Methods, A6, 1977, pp. 813–827.