createDatastores
Description
[
creates a datastore, sigdata
,lbldata
] = createDatastores(lss
,lblnames
)sigdata
, containing signal member data, and a
datastore, lbldata
, containing label data from labels specified in the
string array lblnames
. createDatastores
does not apply
to sublabels. Set lblnames
to one or more parent label names to get the
parent labels and the corresponding sublabel values.
Examples
Create Datastores
Load a labeled signal set containing recordings of whale songs.
load whales
lss
lss = labeledSignalSet with properties: Source: {2x1 cell} NumMembers: 2 TimeInformation: "sampleRate" SampleRate: 4000 Labels: [2x3 table] Description: "Characterize wave song regions" Use labelDefinitionsHierarchy to see a list of labels and sublabels. Use setLabelValue to add data to the set.
Display the labels for the first member of the set.
lss.Labels(1,:)
ans=1×3 table
WhaleType MoanRegions TrillRegions
_________ ___________ ____________
Member{1} blue {3x2 table} {1x3 table}
Get the names of the labels in the set. Create a signal datastore with the signal information and an array datastore with the label information.
lbls = getLabelNames(lss); [sgd,lbd] = createDatastores(lss,lbls)
sgd = signalDatastore with properties: MemberNames:{ 'Member{1}'; 'Member{2}' } Members: {2x1 cell} ReadSize: 1 SampleRate: 4000 OutputDataType: "same" OutputEnvironment: "cpu"
lbd = ArrayDatastore with properties: ReadSize: 1 IterationDimension: 1 OutputType: "cell"
Display the labels for the first member of the set.
lbls = read(lbd); lbls{:}
ans=1×3 table
WhaleType MoanRegions TrillRegions
_________ ___________ ____________
blue {3x2 table} {1x3 table}
Count Label Values and Create Datastores
Specify the path to a set of audio signals included as MAT files with MATLAB®. Each file contains a signal variable and a sample rate. List the names of the files.
folder = fullfile(matlabroot,"toolbox","matlab","audiovideo"); lst = dir(append(folder,"/*.mat")); nms = {lst(:).name}'
nms = 7x1 cell
{'chirp.mat' }
{'gong.mat' }
{'handel.mat' }
{'laughter.mat'}
{'mtlb.mat' }
{'splat.mat' }
{'train.mat' }
Create a signal datastore that points to the specified folder. Set the sample rate variable name to Fs
, which is common to all files. Generate a subset of the datastore that excludes the file mtlb.mat
. Use the subset datastore as the source for a labeledSignalSet
object.
sds = signalDatastore(folder,SampleRateVariableName="Fs"); sds = subset(sds,~strcmp(nms,"mtlb.mat")); lss = labeledSignalSet(sds);
Create three label definitions to label the signals:
Define a logical attribute label that is true for signals that contain human voices.
Define a numeric point label that marks the location and amplitude of the maximum of each signal.
Define a categorical region-of-interest (ROI) label to pick out nonoverlapping, uniform-length random regions of each signal.
Add the signal label definitions to the labeled signal set.
vc = signalLabelDefinition("Voice",LabelType="attribute", ... LabelDataType="logical",DefaultValue=false); mx = signalLabelDefinition("Maximum",LabelType="point", ... LabelDataType="numeric"); rs = signalLabelDefinition("RanROI",LabelType="ROI", ... LabelDataType="categorical",Categories=["ROI" "other"]); addLabelDefinitions(lss,[vc mx rs])
Label the signals:
Label
'handel.mat'
and'laughter.mat'
as having human voices.Use the
islocalmax
function to find the maximum of each signal. Label its location and value.Use the
randROI
function to generate as many regions of length N/10 samples as can fit in a signal of length N given a minimum separation of N/6 samples between regions. Label their locations and assign them to theROI
category.
When labeling points and regions, convert sample values to time values. Subtract 1 to account for MATLAB array indexing and divide by the sample rate.
kj = 1; while hasdata(sds) [sig,info] = read(sds); fs = info.SampleRate; [~,fn] = fileparts(info.FileName); if fn=="handel" || fn=="laughter" setLabelValue(lss,kj,"Voice",true) end xm = find(islocalmax(sig,MaxNumExtrema=1)); setLabelValue(lss,kj,"Maximum",(xm-1)/fs,sig(xm)) N = length(sig); rois = randROI(N,round(N/10),round(N/6)); setLabelValue(lss,kj,"RanROI",(rois-1)/fs, ... repelem("ROI",size(rois,1))) kj = kj+1; end
Verify that only two signals contain voices.
countLabelValues(lss,"Voice")
ans=2×3 table
Voice Count Percent
_____ _____ _______
false 4 66.667
true 2 33.333
Verify that two signals have a maximum amplitude of 1.
countLabelValues(lss,"Maximum")
ans=5×4 table
Maximum Count Percent MemberCount
______________________ _____ _______ ___________
0.80000000000000004441 1 16.667 1
0.89113331915798421612 1 16.667 1
0.94730769230769229505 1 16.667 1
1 2 33.333 2
1.0575668990330560071 1 16.667 1
Verify that each signal has four nonoverlapping random regions of interest.
countLabelValues(lss,"RanROI")
ans=2×4 table
RanROI Count Percent MemberCount
______ _____ _______ ___________
ROI 24 100 6
other 0 0 0
Create two datastores with the data in the labeled signal set:
The
signalDatastore
(Signal Processing Toolbox) objectsd
contains the signal data.The
arrayDatastore
objectld
contains the labeling information. Specify that you want to include the information corresponding to all the labels you created.
[sd,ld] = createDatastores(lss,["Voice" "RanROI" "Maximum"]);
Use the information in the datastores to plot the signals and display their labels.
Use a
signalMask
(Signal Processing Toolbox) object to highlight the regions of interest in blue.Plot yellow lines to mark the locations of the maxima.
Add a red axis label to the signals that contain human voices.
tiledlayout flow while hasdata(sd) [sg,nf] = read(sd); lbls = read(ld); nexttile msk = signalMask(lbls{:}.RanROI{:},SampleRate=nf.SampleRate); plotsigroi(msk,sg) colorbar off xlabel('') xline(lbls{:}.Maximum{:}.Location, ... LineWidth=2,Color="#EDB120") if lbls{:}.Voice{:} ylabel("VOICED",Color="#D95319") end end
function roilims = randROI(N,wid,sep) num = floor((N+sep)/(wid+sep)); hq = histcounts(randi(num+1,1,N-num*wid-(num-1)*sep),(1:num+2)-1/2); roilims = (1 + (0:num-1)*(wid+sep) + cumsum(hq(1:num)))' + [0 wid-1]; end
Input Arguments
lss
— Labeled signal set
labeledSignalSet
object
Labeled signal set, specified as a labeledSignalSet
object.
Example:
specifies a two-member set of random
signals containing the attribute labeledSignalSet
({randn(100,1)
randn(10,1)},signalLabelDefinition('female'))'female'
.
lblnames
— Label names
character vector | string scalar | cell array of character vectors | string array
Label names, specified as a character vector, a string scalar, a cell array of character vectors, or a string array.
Data Types: char
| string
Output Arguments
sigdata
— Signal data
signalDatastore
object | audioDatastore
object
Signal data, returned as a signalDatastore
(Signal Processing Toolbox) object or an audioDatastore
(Audio Toolbox)
object.
lbldata
— Label data
arrayDatastore
object
Label data, returned as an arrayDatastore
object.
Version History
Introduced in R2021a
See Also
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)