mswcmp
Multisignal 1-D compression using wavelets
Syntax
Description
mswcmp
computes thresholds and, depending on the selected
option, performs compression of 1-D signals using wavelets.
[
returns a compressed version xc
,deccmp
,thresh
] = mswcmp('cmp',dec
,mthd
)xc
of the original multisignal
x
, whose wavelet decomposition structure is
dec
. The compression method is specified by
mthd
. The output xc
is obtained by
thresholding the wavelet coefficients. The output deccmp
is the
wavelet decomposition associated with xc
, and
thresh
is the matrix of threshold values.
returns the computed thresholds if thresh
= mswcmp('thr',___)'cmp'
in the first or second
syntaxes is replaced with 'thr'
.
Examples
Input Arguments
Output Arguments
References
[1] Birgé, L., and P. Massart. “From Model Selection to Adaptive Estimation.” Festschrift for Lucien Le Cam: Research Papers in Probability and Statistics (E. Torgersen, D. Pollard, and G. Yang, eds.). New York: Springer-Verlag, 1997, pp. 55–88.
[2] DeVore, R. A., B. Jawerth, and B. J. Lucier. “Image Compression Through Wavelet Transform Coding.” IEEE Transactions on Information Theory. Vol. 38, Number 2, 1992, pp. 719–746.
[3] Donoho, D. L. “Progress in Wavelet Analysis and WVD: A Ten Minute Tour.” Progress in Wavelet Analysis and Applications (Y. Meyer, and S. Roques, eds.). Gif-sur-Yvette: Editions Frontières, 1993.
[4] Donoho, D. L., and I. M. Johnstone. “Ideal Spatial Adaptation by Wavelet Shrinkage.” Biometrika. Vol. 81, pp. 425–455, 1994.
[5] Donoho, D. L., I. M. Johnstone, G. Kerkyacharian, and D. Picard. “Wavelet Shrinkage: Asymptopia?” Journal of the Royal Statistical Society, series B, Vol. 57, No. 2, pp. 301–369, 1995.
[6] Donoho, D. L., and I. M. Johnstone. “Ideal denoising in an orthonormal basis chosen from a library of bases.” C. R. Acad. Sci. Paris, Ser. I, Vol. 319, pp. 1317–1322, 1994.
[7] Donoho, D. L. “De-noising by Soft-Thresholding.” IEEE Transactions on Information Theory. Vol. 42, Number 3, pp. 613–627, 1995.
[8] Mesa, Hector. “Adapted Wavelets for Pattern Detection.” In Progress in Pattern Recognition, Image Analysis and Applications, edited by Alberto Sanfeliu and Manuel Lazo Cortés, 3773:933–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. https://doi.org/10.1007/11578079_96.
Version History
Introduced in R2007a