does anyone know why this neural network is not giving the right target values????plz any helpppppp

1 view (last 30 days)
%a=imread('A.bmp');
%a=imresize(a,[6,5]);
%a=imresize(a,[1,30]);
inp=[0 0 1 0 0 0 0 1 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 1 1 1 0 0 0 1];
out=[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];
net= newff(inp,out,10)
tol = 0.001; % Error tolerance
%net.trainParam.show = 50;
net.trainParam.lr = 0.007;
net.trainParam.epochs = 500;
net.trainParam.alpha = 0.5;
%net.trainParam.goal = 1e-5;
[net,tr]=train(net,inp,out);
a=sim(net,inp)

Accepted Answer

Greg Heath
Greg Heath on 13 Nov 2013
% Weird data set:
plot(input,target,'o')
The data does not represent points from reasonable function. The target says" Regardless of the input, if the output is 0, your error will only be 3.33%".
Looking at an escalation of models (H=0:9) shows that the Linear model (H=0, NN with no hidden layer) is the best with a coefficient of determination (Wikipedia/R-squared) of only 0.0264. It is only slightly better than the constant output = 0 model.
close all, clear all, clc
N =30
input = [0 0 1 0 0 0 0 1 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 1 1 1 0 0 0 1];
target = [ 1, zeros( 1,N-1)];
% The simplest model is the constant output model that outputs the mean of the target regardless of the input.
y00 = (1/N)*ones(1,N); % 0.0333*ones(1,30)
e00 = target-y00; ; % [ 0.9667, -0.0333*ones(1,29)]
MSE00 = mse(target-y00) % 0.0322
% The next simplest is the linear model
W0 = target/[ ones(1,N) ; input ] % W0 = [ 0.0588 -0.0588 ]
y0 = W0 * [ ones(1,N) ; input ]; % y0 = 0.0588*(1-input)
e0 = target-y0; ; % [ 0.9412, -y0(2:end)]
MSE0 = mse(target-y0) % 0.0314 Not much better than constant model
R20 = 1 - MSE0/MSE00 % 0.0264 VERY BAD FIT
% Neural Model
[ I N ] = size(input) % [ 1 30 ]
[ O N ] = size(target) % [ 1 30 ]
Neq = N*O % 30 = No. of equations
% Nw = (I+1)*H+(H+1)*O = 1+3*H % No. of unknown weights
% No overfitting Neq > Nw==> H <= Hub (upper bound)
Hub = -1+ceil( (Neq-O) / ( I+O+1) ) % 9
Hmax = 9
dH = 1
Hmin = 0 % Linear Model
numH = length(Hmin:dH:Hmax) % 10
Ntrials = 10
rng(0)
j=0
for h=Hmin:dH:Hmax
j=j+1
if h==0
net = patternnet([]);
Nw = (I+1)*O
else
net = patternnet(h);
Nw = (I+1)*h+(h+1)*O
end
for i=1:Ntrials
net = configure(net, input,target);
net.divideFcn = 'dividetrain'; % Default 'dividerand' is much worse
[net tr y e ] = train(net,input,target);
R2(i,j) = 1 - mse(e)/MSE00;
end
end
R2 = R2 % 0.0264* ones(Ntrials,numH) Same as Linear
Hope this helps.
*Thank you for formally accepting my answer *
Greg

More Answers (0)

Categories

Find more on Deep Learning Toolbox in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!