fix the mistake line 91 function
    4 views (last 30 days)
  
       Show older comments
    
% This program simulates a single-channel fiber transmission link 
% using the symmetrized split-step Fourier algorithm. 
% 
% written by Jong-Hyung Lee 
clear all 
%============================================= 
% Define Time Window and Frequency Window 
%============================================= 
taum = 2000; 
dtau = 2*taum/2^11; 
tunit= 1e-12; % make time unit in psec 
tau = (-taum:dtau:(taum-dtau))*tunit; 
fs = 1/(dtau*tunit); 
tl = length(tau)/2; 
w = 2*pi*fs*(-tl:(tl-1))/length(tau); % w=angular freq. 
wst = w(2)-w(1); 
%============================================= 
% Define Physical Parameters 
%============================================= 
c = 3e5; %[km/sec] speed of light 
ram0 = 1.55e-9; %[km] center wavelength 
k0 = 2*pi/ram0; 
n2 = 6e-13 ; %[1/mW] 
gamm = k0*n2 ; %[1/(km*mW)] 
alphaDB = 0.2 ; % [dB/km] Power Loss 
alpha = alphaDB/(10*log10(exp(1))); %[1/km] Power Loss in linear scale 
% Dispersion parameters (beta3 term ignored) 
Dp = -2; % [ps/nm.km] 
beta2 = -(ram0)^2*Dp/(2*pi*c); % [sec^2/km] 
%============================================= 
% Define Input Signal 
%============================================= 
% A single Gaussian pulse is assumed. 
Po = 2; % [mW] initial peak power of signal source 
C = 0; % Chirping Parameter 
m = 1; % Super Gaussian parameter (m=1 ==> Gaussian) 
t0 = 50e-12; %[sec] initial pulse width 
at = sqrt(Po)*exp(-0.5*(1+1i*C)*(tau./t0).^(2*m)); % Input field in the 
time domain 
a0 = fft(at(1,:)); 
af = fftshift(a0); % Input field in the frequency domain 
%============================================= 
% Define Simulation Distance and Step Size 
%============================================= 
zfinal = 100; %[km] propagation distance 
pha_max = 0.01; %[rad] maximum allowable phase shift due to the 
nonlinear operator 
 % pha_max = h*gamma*Po (h = simulation step length) 
h = fix(pha_max/(gamm*Po)); % [km] simulation step length 
M = zfinal/h; % Partition Number 
% Define Dispersion Exp. operator 
% Dh = exp((h/2)*D^), D^=-(1/2)*i*sgnb2*P, P=>(-i*w)^2 
Dh = exp((h/2)*(-alpha/2+(1i/2)*beta2*w.^2)); % 
%================================================% 
% Propagation Through Fiber % 
%================================================% 
% Call the subroutine, sym_ssf.m for the symmetrized split-step Fourier 
method 
[bt,bf] = sym_ssf(M,h,gamm,Dh,af); 
% Preamplifier at the receiver 
% Optical amplifier is assumed ideal (flat frequency response and no noise) 
GdB = 20; % [dB] optical amplifier power gain 
gainA = sqrt(10^(GdB/10)); % field gain in linear scale 
rt = gainA*bt; 
% plot the received power signal 
figure(1) 
plot(tau,abs(rt).^2,'r') 
function [to,fo] =symssf(M,h,gamma,Dh,uf0)  
% Symmetrized Split-Step Fourier Algorithm 
% 
% ==Inputs== 
% M = Simulation step number ( M*h = simulation distance ) 
% h = Simulation step 
% gamma = Nonlinearity coefficient 
% Dh = Dispersion operator in frequency domain 
% uf0 = Input field in the frequency domain 
% 
% ==Outputs== 
% to = Output field in the time domain 
% fo = Output field in the frequency domain 
% 
% written by Jong-Hyung Lee 
for k = 1:M 
   %============================================================= 
   % Propagation in the first half dispersion region, z to z+h/2 
   %============================================================= 
   Hf = Dh.*uf0; 
   %========================================================== 
   % Initial estimate of the nonlinear phase shift at z+(h/2) 
   %========================================================== 
   % Initial estimate value 
   ht = ifft(Hf); % time signal after h/2 dispersion region 
   pq = ht.*conj(ht); % intensity in time 
   u2e = ht.*exp(h*1i*gamma*pq); %Time signal 
   %============================================================= 
   % Propagation in the second Dispersion Region, z+(h/2) to z+h 
   %============================================================= 
   u2ef = fft(u2e); 
   u3ef = u2ef.*Dh; 
   u3e = ifft(u3ef); 
   u3ei = u3e.*conj(u3e); 
   %======================================================== 
   % Iteration for the nonlinear phase shift(two iterations) 
   %======================================================== 
   u2 = ht.*exp((h/2)*1i*gamma*(pq+u3ei)); 
   u2f = fft(u2) ; 
   u3f = u2f.* Dh; 
   u4 = ifft(u3f); 
   u4i = u4.*conj(u4); 
   u5 = ht.*exp((h/2)*1i*gamma*(pq+u4i)); 
   u5f = fft(u5); 
   uf0 = u5f.*Dh; 
   u6 = ifft(uf0); u6i = u6.*conj(u6); 
   %============================================================= 
   % Maximum allowable tolerance after the two iterations 
   etol = 1e-5; 
   if abs(max(abs(u6i))-max(abs(u4i)))/max(abs(u6i)) > etol 
   disp('Peak value is not converging! Reduce Step Size'), break 
   end 
   %============================================================= 
end 
to = u6; fo = uf0;
3 Comments
  Ghislaine Flore Kabadiang ngon
 on 23 Aug 2019
				
      Edited: Ghislaine Flore Kabadiang ngon
 on 23 Aug 2019
  
			Please what is  sym_ssf and where did you define it? I got an error in Matlab because of that.
Accepted Answer
  Image Analyst
      
      
 on 3 Dec 2013
        You're calling sym_ssf() but the function is actually called symssf() with no underline.
5 Comments
More Answers (0)
See Also
Categories
				Find more on Spectral Measurements in Help Center and File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


