Why is the predicted_label +1 even though it should be +1? Using LIBSVM
1 view (last 30 days)
Show older comments
I extracted the principal components of training and testing data. 'trainingdata.train' has feature values from both +1(face 1) and -1(all other faces) labels. 'testdata.train' has feature values from face 2 and no label since i want the SVM to predict its label. The "predicted_label" given by LIBSVM is +1 even though it should be -1.
[training_label_matrix, training_instance_matrix] = libsvmread('trainingdata.train');
[testing_label_matrix, testing_instance_matrix] = libsvmread('testdata.train');
model = svmtrain(training_label_matrix, training_instance_matrix);
[predicted_label] = svmpredict(testing_label_matrix, testing_instance_matrix, model);
Please point me out to what i am doing wrong.
1 Comment
Walter Roberson
on 27 Jan 2014
svm is not going to do a good job on data that is not well separated or when not enough examples have been supplied to determine where the separation should be.
Answers (0)
See Also
Categories
Find more on Dimensionality Reduction and Feature Extraction in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!