Trying to define an array as the derivative of the terms of another array gives just zeros.

3 views (last 30 days)
I have this code. Most of it is working fine. The problem is when I'm trying to define the array dpx and dpy. Instead of giving me the correct values it spits out all zeros once we get to the second time iteration. It works fine on the first though. I'm not sure if I might just be indexing something incorrectly. Since I don't know what is causing the mistake, I'll attach the full code:
N = 4;
Nx = 3;
Ny = 3;
h = 0.2;
t = 0.00005;
n_max = 20000;
Nx_max = 2*Nx+1;
Ny_max = 2*Ny+1;
z = 2/3;
gamma = 4/3;
d = 0.2;
f = zeros(Nx_max,Ny_max,5);
sf=zeros(Nx_max, Ny_max,5,Nx_max);
sf1=zeros(Nx_max,Ny_max,5);
p = zeros(Nx_max,Ny_max, 5);
dxx = zeros(Nx_max, Ny_max);
dxy = zeros(Nx_max, Ny_max);
dyy = zeros(Nx_max, Ny_max);
Ix = zeros(Nx_max,Ny_max, 5);
Iy = zeros(Nx_max,Ny_max,5);
Vx = zeros(Nx_max,Ny_max,5);
Vy = zeros(Nx_max,Ny_max, 5);
lp = zeros(Nx_max,Ny_max,5);
lf = zeros(Nx_max,Ny_max,5);
dpx = zeros(Nx_max,Ny_max,5);
dpy = zeros(Nx_max,Ny_max,5);
plf = zeros(1,5);
pf = zeros(1,5);
t2=2; %indexing so that we only save last few iterations
t1=1;%also used for indexing
for n =1:5
for x = 1:Nx_max;
for y = 1:Ny_max;
%Defining terms and initial value of function
dxx(x,y) = (h^z)*(x^2+y^2)^(1/3)* ((d-1+z)-z*x^2/(x^2+y^2));
dyy(x,y) = (h^z)*(x^2+y^2)^(1/3)* ((d-1+z)-z*y^2/(x^2+y^2));
dxy(x,y) = (h^z)*(x^2+y^2)^(1/3)* (-z*x*y/(x^2+y^2));
p(x,y,1) = x^2+3*y;
f(x,y,1) = y^3+x^4 ;
end
end
%This next loop was pulled out because I needed terms like p(x+1) which isn't known until the whole x loop is run through at least once (I think)
for x = 1:Nx_max
for y = 1:Ny_max
dpx(1,y,t1) = 0;
dpx(Nx_max,y,t1) = 0;
dpx(x,1,t1) = 0;
dpx(x,Nx_max,t1) = 0;
dpy(1,y,t1) = 0;
dpy(Nx_max,y,t1) = 0;
dpy(x,1,t1) = 0;
dpy(x,Nx_max,t1) = 0;
if x>1 && x<Nx_max %So that we don't run into an index being zero
dpx(x,y,t1) = p(x+1,y,t1) - p(x-1,y,t1);
end
if y> 1 && y<Ny_max %Same as the x reasoning
dpy(x,y,t1) = p(x,y+1,t1)-p(x,y-1,t1);
end
Ix= f.*dpx/2;
Iy= f.*dpy/2;
end
end
Vx = (N-1)*h*(convn(Ix,dxx)+convn(Iy,dxy));
Vy = (N-1)*h*(convn(Ix,dxy)+convn(Iy,dyy));
%This section seems to have the same issue as the the dpx and dpy's
for x = 2:Nx_max-1
for y = 2:Ny_max-1
lp(x,y,t1) = (1/(4*h^2))*dxx(x,y)*p(x+1,y+1) + (dxx(x,y)/h^2 - Vx(x,y)/(2*h) - x/(2*gamma))* p(x+1,y,t1) - ...
(1/(4*h^2))*dxy(x,y)*p(x+1,y-1,t1) + (dyy(x,y)/(h^2) - Vy(x,y,t1)/(2*h) - y/(2*gamma))*p(x,y+1,t1) - ...
(2*dxx(x,y) + 2*dyy(x,y))*(1/h^2)*p(x,y) +(dyy(x,y)/(h^2) + Vy(x,y)/(2*h) +y/(2*gamma))*p(x,y-1) - ...
(dxy(x,y)/(4*h^2))*p(x-1,y+1) +(dxx(x,y)/(h^2) +Vx(x,y)/(2*h) +x/(2*gamma))*p(x-1,y,t1) + (dxy(x,y)/(4*h^2))*p(x-1,y-1,t1);
lf(x,y,t1)= (1/(4*h^2))*dxx(x+1,y+1)*f(x+1,y+1,t1) + (dxx(x+1,y)/h^2 + Vx(x+1,y,t1)/(2*h) + (x+1)/(2*gamma))* f(x+1,y,t1) - ...
(1/(4*h^2))*dxy(x+1,y-1)*f(x+1,y-1,t1) + (dyy(x,y+1)/(h^2) + Vy(x,y+1,t1)/(2*h) +(x+1)/(2*gamma))*f(x,y+1,t1) - ...
(2*dxx(x,y) + 2*dyy(x,y))*(1/h^2)*f(x,y,t1) +(dyy(x,y-1)/(h^2) - Vy(x,y-1,t1)/(2*h) -(y-1)/(2*gamma))*f(x,y-1,t1) - ...
(dxy(x-1,y+1)/(4*h^2))*f(x-1,y+1,t1) +(dxx(x-1,y)/(h^2) -Vx(x-1,y,t1)/(2*h) -(x-1)/(2*gamma))*f(x-1,y,t1) + (dxy(x-1,y-1)/(4*h^2))*f(x-1,y-1,t1);
lp(1,y,t1) = 0;
lp(Nx_max,y,t1)= 0;
lp(x,1,t1) = 0;
lp(x,Ny_max,t1) = 0;
lf(1,y,t1) = 0;
lf(Nx_max,y,t1)= 0;
lf(x,1,t1) = 0;
lf(x,Ny_max,t1) = 0;
end
end
plf = sum(sum(p.*lf));
pf = sum(sum(p.*f));
%Next we use all the values found to get the next time iteration
for x = 1:Nx_max
for y = 1:Ny_max
p(x,y,t2)= t*(lp(x,y,t1) - plf(t1)*p(x,y,t1)/pf(t1)) + p(x,y,t1);
f(x,y,t2) = t*(lf(x,y,t1) - plf(t1)*f(x,y,t1)/pf(t1)) + p(x,y,t1);
end
end
if t2>5 %tells it to loop back to first spot in the array. This should conserve on memory.
t2=1;
end
end

Answers (1)

Geoff Hayes
Geoff Hayes on 20 Jun 2014
Edited: Geoff Hayes on 20 Jun 2014
The following code is where the dpx and dpy matrices are set
if x>1 && x<Nx_max %So that we don't run into an index being zero
dpx(x,y,t1) = p(x+1,y,t1) - p(x-1,y,t1);
end
if y> 1 && y<Ny_max %Same as the x reasoning
dpy(x,y,t1) = p(x,y+1,t1)-p(x,y-1,t1);
end
At the end of the script/function, if you print the results for dpx and dpy, then like you said only dpx(:,:,1) and dpy(:,:,1) have non-zero values.
As per the code, the third dimension in each of these arrays uses the tl variable which is initialized to 1 but is never incremented. So each iteration overwrites the last set of data and the matrices do not get set properly.
The trick will be how to decide when to increment t1. Maybe an outer loop is missing to iterate over t1 from 1:5?
NOTE that there may be a similar problem with the p and f matrices. They are both defined to be 7x7x5 but only the first 7x7 matrix is set:
p(x,y,1) = x^2+3*y;
f(x,y,1) = y^3+x^4 ;
Perhaps n should be used instead of 1?
  1 Comment
sasha
sasha on 20 Jun 2014
Yes, thanks for that I caught that myself a moment ago.
There should be one last line that reads:
t1 = t2
if t2<5
t2 = t2+1
else
t2 = 1
end
Right now I have the max n as 5, but I'm going to possibly need very many more iterations. Hence the t's

Sign in to comment.

Categories

Find more on Loops and Conditional Statements in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!