Too many input arguments while solving BVP using bvp4c
2 views (last 30 days)
Show older comments
Anshuman Pal
on 21 Aug 2021
Commented: Star Strider
on 21 Aug 2021
Hello, I am trying to run the following chunk of code, which integrates a system of 11 ODEs with an eigenvalue to be fixed. I get a 'too many arguments' error on calling the function bvp_RHS(). I don't get why:
phif = 0.1; % total length
phit = 0.05;
alpha = 0.3;
C_init = 1e-2;
solinit = bvpinit(linspace(-phif/2, phif/2, 10), @(x)mat4init(x, phif), C_init);
options = bvpset('Stats','on','RelTol',1e-5);
sol = bvp4c(@bvp_RHS, @(yL,yR)bvp_BC(yL, yR, phit, alpha), solinit, options);
%-------------------------------------------------------------------------
function yinit = mat4init(x, phif)
yinit = [cos(pi/phif*x)
-pi/phif * sin(pi/phif*x)
0.1
0.1
0.1
-0.1
0.1
0
0
0
0
];
end
function dyds = bvp_RHS(y,C)
% Total 2+9=11 variables.
dyds = [ y(2)
-0.5*y(1)^3 - C*y(1) % -0.5*kappa^3 - C*kappa
y(6) % =tx
y(7) % =ty
y(8) % =tz
-y(3) + y(1)*y(9) % =-rx + kappa*nx
-y(4) + y(1)*y(10) % =-ry + kappa*ny
-y(5) + y(1)*y(11) % =-rz + kappa*nz
-y(1)*y(6) % =-kappa*tx
-y(1)*y(7) % =-kappa*ty
-y(1)*y(8) % =-kappa*tz
];
end
%-------------------------------------------------------------------------
function res = bvp_BC(yL, yR, phit, alpha)
% BCs at L and R boundaries, with constraint for eigenvalue C.
% Symmetrised BCs for r and t, so that L and R are at \pm phit/2.
res = [ yL(1)
yR(1)
yL(3)-cos(phit/2) % fix position: rx
yL(4)+sin(phit/2) % fix position: ry
yL(5) % fix position: rz
yR(3)-cos(phit/2) % fix position: rx
yR(4)-sin(phit/2) % fix position: ry
yR(5) % fix position: rz
yL(6)-sin(phit/2)*cos(alpha) % fix slope: tx
yL(7)-cos(phit/2)*cos(alpha) % fix slope: ty
yL(8)-sin(alpha) % fix slope: tz
yR(6)-sin(phit/2)*cos(alpha) % fix slope: tx
];
end
Could someone please advise?
0 Comments
Accepted Answer
Star Strider
on 21 Aug 2021
The problem with ‘bvp_RHS’ was actually not with it, but with the extra argument to bvpinit. Eliminating that then produced the error that ‘bvp_BC’ needs to return 11 boundary conditions, not 12 as it currently does. So, I commented-out the last one, and the code ran without error.
Check ‘bvp_BC’ and eliminate the extraneous boundary condition, since I might not have eliminated the correct one (I just wanted to see if the code otherwise worked).
phif = 0.1; % total length
phit = 0.05;
alpha = 0.3;
C_init = 1e-2;
solinit = bvpinit(linspace(-phif/2, phif/2, 100), @(x)mat4init(x, phif));
options = bvpset('Stats','on','RelTol',1e-5);
sol = bvp4c(@bvp_RHS, @(yL,yR)bvp_BC(yL, yR, phit, alpha), solinit, options)
figure
plot(sol.x, sol.y)
grid
legend(compose('$y_{%2d}$',1:11), 'Location','bestoutside', 'Interpreter','latex')
%-------------------------------------------------------------------------
function yinit = mat4init(x, phif)
yinit = [cos(pi/phif*x)
-pi/phif * sin(pi/phif*x)
0.1
0.1
0.1
-0.1
0.1
0
0
0
0
];
end
function dyds = bvp_RHS(C,y)
% Total 2+9=11 variables.
dyds = [ y(2)
-0.5*y(1)^3 - C*y(1) % -0.5*kappa^3 - C*kappa
y(6) % =tx
y(7) % =ty
y(8) % =tz
-y(3) + y(1)*y(9) % =-rx + kappa*nx
-y(4) + y(1)*y(10) % =-ry + kappa*ny
-y(5) + y(1)*y(11) % =-rz + kappa*nz
-y(1)*y(6) % =-kappa*tx
-y(1)*y(7) % =-kappa*ty
-y(1)*y(8) % =-kappa*tz
];
end
%-------------------------------------------------------------------------
function res = bvp_BC(yL, yR, phit, alpha)
% BCs at L and R boundaries, with constraint for eigenvalue C.
% Symmetrised BCs for r and t, so that L and R are at \pm phit/2.
res = [ yL(1)
yR(1)
yL(3)-cos(phit/2) % fix position: rx
yL(4)+sin(phit/2) % fix position: ry
yL(5) % fix position: rz
yR(3)-cos(phit/2) % fix position: rx
yR(4)-sin(phit/2) % fix position: ry
yR(5) % fix position: rz
yL(6)-sin(phit/2)*cos(alpha) % fix slope: tx
yL(7)-cos(phit/2)*cos(alpha) % fix slope: ty
yL(8)-sin(alpha) % fix slope: tz
% yR(6)-sin(phit/2)*cos(alpha) % fix slope: tx
];
end
The output doesn’t look very interesting, however if it does what you want, that may not be an issue.
.
2 Comments
More Answers (0)
See Also
Categories
Find more on Mathematics and Optimization in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!