the utilization of cpu and gpu is low, how to increase them?

3 views (last 30 days)
while i am using matlab to train a alexnet from the scratch on window, the utilization ratio of cpu and gpu of my computer is low, and I wonder how to increase them.
here is my code:
trainImagesetPath = 'E:\deep_learning_dataset\tiny-imagenet-200\train';
valImagesetPath = 'E:\deep_learning_dataset\tiny-imagenet-200\val';
testImagesetPath = 'E:\deep_learning_dataset\tiny-imagenet-200\test';
miniBatchSize = 960;
imdsTrain = imageDatastore(trainImagesetPath, 'IncludeSubfolders', true, ...
'LabelSource', 'foldernames', 'FileExtensions',{'.jpg','.JPG', '.JPEG'}, 'ReadSize', miniBatchSize);
imdsValidation = imageDatastore(valImagesetPath, 'IncludeSubfolders', true, ...
'LabelSource', 'foldernames', 'FileExtensions',{'.jpg','.JPG', '.JPEG'}, 'ReadSize', miniBatchSize);
imdsTest = imageDatastore(testImagesetPath, 'IncludeSubfolders', true);
layers = [imageInputLayer([224 224 3])
convolution2dLayer(11, 96, 'Stride', [4, 4], 'Padding', [0 0 0 0])
reluLayer
batchNormalizationLayer
maxPooling2dLayer(3, 'Stride', [2, 2], 'Padding', [0 0 0 0])
groupedConvolution2dLayer(5, 128, 2, 'Stride', [1, 1], 'Padding', [2 2 2 2])
reluLayer
batchNormalizationLayer
maxPooling2dLayer(3, 'Stride', [2, 2], 'Padding', [0 0 0 0])
convolution2dLayer(3, 384, 'Stride', [1, 1], 'Padding', [1 1 1 1])
reluLayer
groupedConvolution2dLayer(3, 192, 2, 'Stride', [1, 1], 'Padding', [1 1 1 1])
reluLayer
groupedConvolution2dLayer(3, 128, 2, 'Stride', [1, 1], 'Padding', [1 1 1 1])
reluLayer
maxPooling2dLayer(3, 'Stride', [2, 2], 'Padding', [0 0 0 0])
fullyConnectedLayer(4096)
reluLayer
dropoutLayer(0.5)
fullyConnectedLayer(4096)
reluLayer
dropoutLayer(0.5)
fullyConnectedLayer(200)
softmaxLayer
classificationLayer
];
% analyzeNetwork(layers);
inputSize = [224, 224, 3];
augimdsTrain = augmentedImageDatastore(inputSize, imdsTrain, 'ColorPreprocessing', 'gray2rgb', 'DispatchInBackground', true);
augimdsValidation = augmentedImageDatastore(inputSize, imdsValidation, 'ColorPreprocessing', 'gray2rgb', 'DispatchInBackground', true);
augimdsTest = augmentedImageDatastore(inputSize, imdsTest, 'ColorPreprocessing', 'gray2rgb');
options = trainingOptions('adam', ...
'MiniBatchSize', miniBatchSize, ...
'MaxEpochs',120, ...
'InitialLearnRate',1e-4, ...
'LearnRateSchedule', 'piecewise', ...
'LearnRateDropFactor', 0.25, ...
'LearnRateDropPeriod', 5, ...
'DispatchInBackground', true, ...
'Shuffle','every-epoch', ...
'ValidationData', augimdsValidation, ...
'ValidationFrequency', 20, ...
'Verbose',true, ...
'Plots','training-progress', ...
'ExecutionEnvironment', 'auto');
tic
alexNetModel = trainNetwork(augimdsTrain,layers,options);
fprintf('training process time cost: ');
toc
[YPred,scores] = classify(alexNetModel,augimdsTest);
YTest = imdsTest.Labels;
accuracy = mean(YPred == YTest);
fprintf('test acc: %f\n', accuracy);
figure
confusionchart(YTest, YPred)
my computer is a lenovo laptop called r9000k 2021 with rtx3080 laptop GPU, and the utilization ratio is shown as follow:

Answers (0)

Categories

Find more on Image Data Workflows in Help Center and File Exchange

Products


Release

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!