Most efficient way to do matrix operation v'*M*v

2 views (last 30 days)
Hi all,
i have a problem where I need to do the following operation:
R is a square matrix
V is a nonsquare matrix
The operation is to multiply 1 - V(i, :)*inv( R )*V(i, :)', and store the result for each i.
Right now I'm doing it using a for loop:
Rinv = inv( R );
for i=1:n
val(i) = 1 - Z(i, :)*Rinv*Z(i, :)';
end
My problem requires performing this calculation a few million times and I'm trying to optimize it as much as possible. Is there a way to get rid of the for loop? I could do V*inv( R )*V', but that performs a lot more inner products than I actually need.
Thanks for the help.

Accepted Answer

Roger Stafford
Roger Stafford on 18 Sep 2014
Assuming the values in V are real,
val = 1-sum((V/R).*V,2);
If V has complex-valued elements, change that to
val = 1-sum((V/R).*conj(V),2);
Note that V must have the same number of columns as R has rows and columns.

More Answers (0)

Categories

Find more on Operating on Diagonal Matrices in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!