Why, when I calculate the skewness of a series with constants, do I not get NaN?
5 views (last 30 days)
Show older comments
Angelavtc
on 11 Oct 2021
Commented: Cris LaPierre
on 11 Oct 2021
Dear Matlab community,
I have a simulation of normally distributed numbers with a mean of 76 and a standard deviation of 0, which describes a series of constant numbers with the value 76. To this simulation, I apply a function that also yields constants and, therefore, its skewness should be also NaN. Why, when I calculate their skewness, do I not get NaN but 1? How do I correct this error?
Thanks in advance!
Np=20;
cb=2;
ab = 30*(Np/100)^(cb-1);
n=100;
Qd = normrnd(76,0,n,1);
Pw=ab*((Qd/Np).^(cb-1));
skewness(Pw)
skewness(Qd)
var(Qd)
0 Comments
Accepted Answer
Cris LaPierre
on 11 Oct 2021
I suspect this has to do with how floating point numbers are stored in a computer. 76 can be stored exactly as is, but 22.8000 is not exactly 22.8 in your computer. If you round Pw, you will see the skewness is also NaN.
format long
Np=20;
cb=2;
ab = 30*(Np/100)^(cb-1);
Qd = normrnd(76,0,100,1);
Pw=ab*((Qd/Np).^(cb-1));
Pw(1)
skewness(Pw)
var(Pw)
skewness(round(Pw))
skewness(Qd)
var(Qd)
More Answers (0)
See Also
Categories
Find more on Descriptive Statistics in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!