How to solve a nonlinear least squares with 3 variables
10 views (last 30 days)
Show older comments
% I would like to find u=[ u(1); u(2); u(3)]; size(u)=3-by-1;
"rho" and "rho2" are also functions of "u" and all scalar values and defined as below.
rho=norm(s-u) % s is a known 3-by-1 vector; so rho is Euclidian distance between s and u, i.e. sqrt((s(1)-u(1))^2+(s(2)-u(2))^2+(s(3)-u(3))^2).
rho2=a'*(s-u)/norm(s-u); % a is a known 3-by-1 vector
Does anyone know how to minimize the functin below?
h-G*u-Q*rho-R*rho2 ; % h is 4-by-1 kown matrix; G is a 4-by-3 kown matrix; and Q, R all are 4-by-1 kown matrix;
Actually I wanated to solve h-G*u-Q*rho-R*rho2=0 but it is overdetermined. So the nonlinear least squares method can be applied to this problem.
Thanks,
0 Comments
Accepted Answer
Pratyush Roy
on 1 Dec 2021
Hi John,
The following code snippet might be helpful:
u0 = rand([3,1]);
s = rand([3,1]);
a = randi(10,[3,1]);
h = rand([4,1]);
G = rand([4,3]);
Q = rand([4,1]);
R = rand([4,1]);
f1 = @(u)(h-G*u-Q*norm(s-u)+R*a'*(s-u)./norm(s-u));
x = lsqnonlin(f1,u0)
Hope this helps!
More Answers (0)
See Also
Categories
Find more on Systems of Nonlinear Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!