Removing a particular legend from plot

4 views (last 30 days)
clear all
clc
k1=0.7;
k2=01;
wf=1;
ws=1.5;
b=0.15;
d=0.15;
a=0.15;
h=0.05;
j=0;
l=0;
ns1=0;
ns2=0;
nu=0;
for Zf= 0.01:0.01:1.5
n=0;
zf=Zf;
u7=-pi;
u5=pi*(wf^2 + 2*zf*(a + h)*wf + ws^2 + a*h + 1);
u3=(-pi*(wf^2*(ws^2 + a*h + 1) - k1*k2 + ws^2 + 2*wf*zf*(h*ws^2 + a)));
u2=8*b*d*wf*ws^2*zf;
u1=pi*(wf^2*ws^2 - k1*k2*ws^2);
v6=pi*(a + h + 2*wf*zf);
v4=(-pi*(a + wf^2*(a + h) + h*ws^2 + 2*wf*zf*(ws^2 + a*h + 1)));
v3=4*b*d*ws^2;
v2=pi*(wf^2*(h*ws^2 + a) + 2*wf*ws^2*zf - a*k1*k2);
v1=(-4*b*d*wf^2*ws^2);
j4=v3*u7;
j3=v3*u5+v1*u7-u2*v6;
j2=v3*u3+v1*u5-u2*v4;
j1=v3*u1+v1*u3-u2*v2;
j0=v1*u1;
j=[j4 j3 j2 j1 j0];
jr=roots(j);
w=jr.^0.5;
for i=1:size(w)
if imag(w(i,1))==0
o=w(i,1);
A=-u2*o^2/(u7*o^7+u5*o^5+u3*o^3+u1*o);
if A>0
d1=6*A*pi*(a + h + 2*wf*zf)*o^5 + (-4*A*pi*(a + wf^2*(a + h) + h*ws^2 + 2*wf*zf*(ws^2 + a*h + 1)))*o^3 + 12*b*d*ws^2*o^2 + 2*A*pi*(wf^2*(h*ws^2 + a) + 2*wf*ws^2*zf - a*k1*k2)*o - 4*b*d*wf^2*ws^2;
d2=- pi*o^7 + pi*(wf^2 + 2*zf*(a + h)*wf + ws^2 + a*h + 1)*o^5 - pi*(wf^2*(ws^2 + a*h + 1) - k1*k2 + ws^2 + 2*wf*zf*(h*ws^2 + a))*o^3 + pi*(wf^2*ws^2 - k1*k2*ws^2)*o;
d3=(-7*pi*A)*o^6 + 5*A*pi*(wf^2 + 2*zf*(a + h)*wf + ws^2 + a*h + 1)*o^4 + (-3*A*pi*(wf^2*(ws^2 + a*h + 1) - k1*k2 + ws^2 + 2*wf*zf*(h*ws^2 + a)))*o^2 + 16*b*d*wf*ws^2*zf*o + pi*A*(wf^2*ws^2 - k1*k2*ws^2);
d4=pi*(a + h + 2*wf*zf)*o^6 - pi*(a + wf^2*(a + h) + h*ws^2 + 2*wf*zf*(ws^2 + a*h + 1))*o^4 + pi*(wf^2*(h*ws^2 + a) + 2*wf*ws^2*zf - a*k1*k2)*o^2;
D=d1*d2-d3*d4;
l=l+1;
R(l,1)=A;
R(l,2)=o;
R(l,3)=D/abs(D);
end
end
end
R=sortrows(R,-1);
for k=1:size(R,1)
if R(k,3)==1
n=n+1;
if n==1;
ns1=ns1+1;
As1(ns1)=R(k,1);
Zfs1(ns1)=zf;
elseif n==2
ns2=ns2+1;
As2(ns2)=R(k,1);
Zfs2(ns2)=zf;
end
end
if R(k,3)==-1
nu=nu+1;
Au(nu)=R(k,1);
Zfu(nu)=zf;
end
end
R=0;l=0;
end
if ns1>0
plot(Zfs1,As1,'-k')
hold on
end
if ns2>0
plot(Zfs2,As2,'-k')
hold on
end
if nu>0
plot(Zfu,Au,':k')
end
legend
You can see the plot data 1 and data 2 are ploted with same property of line therefore i want to rmove the legend even the legend mark from data 2

Accepted Answer

Star Strider
Star Strider on 24 Nov 2021
The first two lines have the same line style.
To see them individually, choose a different line style for each.
To label them in the legend, use the DisplayName option as described in Specify Legend Labels During Plotting Commands.
I did that in this minor revision of the posted code —
k1=0.7;
k2=01;
wf=1;
ws=1.5;
b=0.15;
d=0.15;
a=0.15;
h=0.05;
j=0;
l=0;
ns1=0;
ns2=0;
nu=0;
for Zf= 0.01:0.01:1.5
n=0;
zf=Zf;
u7=-pi;
u5=pi*(wf^2 + 2*zf*(a + h)*wf + ws^2 + a*h + 1);
u3=(-pi*(wf^2*(ws^2 + a*h + 1) - k1*k2 + ws^2 + 2*wf*zf*(h*ws^2 + a)));
u2=8*b*d*wf*ws^2*zf;
u1=pi*(wf^2*ws^2 - k1*k2*ws^2);
v6=pi*(a + h + 2*wf*zf);
v4=(-pi*(a + wf^2*(a + h) + h*ws^2 + 2*wf*zf*(ws^2 + a*h + 1)));
v3=4*b*d*ws^2;
v2=pi*(wf^2*(h*ws^2 + a) + 2*wf*ws^2*zf - a*k1*k2);
v1=(-4*b*d*wf^2*ws^2);
j4=v3*u7;
j3=v3*u5+v1*u7-u2*v6;
j2=v3*u3+v1*u5-u2*v4;
j1=v3*u1+v1*u3-u2*v2;
j0=v1*u1;
j=[j4 j3 j2 j1 j0];
jr=roots(j);
w=jr.^0.5;
for i=1:size(w)
if imag(w(i,1))==0
o=w(i,1);
A=-u2*o^2/(u7*o^7+u5*o^5+u3*o^3+u1*o);
if A>0
d1=6*A*pi*(a + h + 2*wf*zf)*o^5 + (-4*A*pi*(a + wf^2*(a + h) + h*ws^2 + 2*wf*zf*(ws^2 + a*h + 1)))*o^3 + 12*b*d*ws^2*o^2 + 2*A*pi*(wf^2*(h*ws^2 + a) + 2*wf*ws^2*zf - a*k1*k2)*o - 4*b*d*wf^2*ws^2;
d2=- pi*o^7 + pi*(wf^2 + 2*zf*(a + h)*wf + ws^2 + a*h + 1)*o^5 - pi*(wf^2*(ws^2 + a*h + 1) - k1*k2 + ws^2 + 2*wf*zf*(h*ws^2 + a))*o^3 + pi*(wf^2*ws^2 - k1*k2*ws^2)*o;
d3=(-7*pi*A)*o^6 + 5*A*pi*(wf^2 + 2*zf*(a + h)*wf + ws^2 + a*h + 1)*o^4 + (-3*A*pi*(wf^2*(ws^2 + a*h + 1) - k1*k2 + ws^2 + 2*wf*zf*(h*ws^2 + a)))*o^2 + 16*b*d*wf*ws^2*zf*o + pi*A*(wf^2*ws^2 - k1*k2*ws^2);
d4=pi*(a + h + 2*wf*zf)*o^6 - pi*(a + wf^2*(a + h) + h*ws^2 + 2*wf*zf*(ws^2 + a*h + 1))*o^4 + pi*(wf^2*(h*ws^2 + a) + 2*wf*ws^2*zf - a*k1*k2)*o^2;
D=d1*d2-d3*d4;
l=l+1;
R(l,1)=A;
R(l,2)=o;
R(l,3)=D/abs(D);
end
end
end
R=sortrows(R,-1);
for k=1:size(R,1)
if R(k,3)==1
n=n+1;
if n==1;
ns1=ns1+1;
As1(ns1)=R(k,1);
Zfs1(ns1)=zf;
elseif n==2
ns2=ns2+1;
As2(ns2)=R(k,1);
Zfs2(ns2)=zf;
end
end
if R(k,3)==-1
nu=nu+1;
Au(nu)=R(k,1);
Zfu(nu)=zf;
end
end
R=0;l=0;
end
if ns1>0
plot(Zfs1,As1,'-k', 'DisplayName','ns_1 > 0')
hold on
end
if ns2>0
plot(Zfs2,As2,'-k', 'DisplayName','ns_2 > 0')
hold on
end
if nu>0
plot(Zfu,Au,':k', 'DisplayName','nu > 0')
end
legend
.
  4 Comments
Joy Mondal
Joy Mondal on 24 Nov 2021
Edited: Joy Mondal on 24 Nov 2021
Actually the solid lines are stable solutions for a particular value of a parametr & dashed one is the unstable one..that is why i am trying to hide it from legend only one solid line is sufficient to describe the plot... thanks.
Star Strider
Star Strider on 24 Nov 2021
That was not obvious before.
That solution is straightforward. Change the if block and plot calls respectively to —
if ns1>0
hp{1} = plot(Zfs1,As1,'-k', 'DisplayName','ns_1 > 0');
hold on
end
if ns2>0
hp{2} = plot(Zfs2,As2,'-k', 'DisplayName','ns_2 > 0');
hold on
end
if nu>0
hp{3} = plot(Zfu,Au,':k', 'DisplayName','nu > 0');
end
legend([hp{[1 2]}], 'Location','best')
Note that ‘hp{3}’ exists if using it later is desired, although it is not used here. See Included Subset of Graphics Objects in Legend to documentation on that legend option.
I already made those changes in this version of the code, and those results are displayed in the plot
k1=0.7;
k2=01;
wf=1;
ws=1.5;
b=0.15;
d=0.15;
a=0.15;
h=0.05;
j=0;
l=0;
ns1=0;
ns2=0;
nu=0;
for Zf= 0.01:0.01:1.5
n=0;
zf=Zf;
u7=-pi;
u5=pi*(wf^2 + 2*zf*(a + h)*wf + ws^2 + a*h + 1);
u3=(-pi*(wf^2*(ws^2 + a*h + 1) - k1*k2 + ws^2 + 2*wf*zf*(h*ws^2 + a)));
u2=8*b*d*wf*ws^2*zf;
u1=pi*(wf^2*ws^2 - k1*k2*ws^2);
v6=pi*(a + h + 2*wf*zf);
v4=(-pi*(a + wf^2*(a + h) + h*ws^2 + 2*wf*zf*(ws^2 + a*h + 1)));
v3=4*b*d*ws^2;
v2=pi*(wf^2*(h*ws^2 + a) + 2*wf*ws^2*zf - a*k1*k2);
v1=(-4*b*d*wf^2*ws^2);
j4=v3*u7;
j3=v3*u5+v1*u7-u2*v6;
j2=v3*u3+v1*u5-u2*v4;
j1=v3*u1+v1*u3-u2*v2;
j0=v1*u1;
j=[j4 j3 j2 j1 j0];
jr=roots(j);
w=jr.^0.5;
for i=1:size(w)
if imag(w(i,1))==0
o=w(i,1);
A=-u2*o^2/(u7*o^7+u5*o^5+u3*o^3+u1*o);
if A>0
d1=6*A*pi*(a + h + 2*wf*zf)*o^5 + (-4*A*pi*(a + wf^2*(a + h) + h*ws^2 + 2*wf*zf*(ws^2 + a*h + 1)))*o^3 + 12*b*d*ws^2*o^2 + 2*A*pi*(wf^2*(h*ws^2 + a) + 2*wf*ws^2*zf - a*k1*k2)*o - 4*b*d*wf^2*ws^2;
d2=- pi*o^7 + pi*(wf^2 + 2*zf*(a + h)*wf + ws^2 + a*h + 1)*o^5 - pi*(wf^2*(ws^2 + a*h + 1) - k1*k2 + ws^2 + 2*wf*zf*(h*ws^2 + a))*o^3 + pi*(wf^2*ws^2 - k1*k2*ws^2)*o;
d3=(-7*pi*A)*o^6 + 5*A*pi*(wf^2 + 2*zf*(a + h)*wf + ws^2 + a*h + 1)*o^4 + (-3*A*pi*(wf^2*(ws^2 + a*h + 1) - k1*k2 + ws^2 + 2*wf*zf*(h*ws^2 + a)))*o^2 + 16*b*d*wf*ws^2*zf*o + pi*A*(wf^2*ws^2 - k1*k2*ws^2);
d4=pi*(a + h + 2*wf*zf)*o^6 - pi*(a + wf^2*(a + h) + h*ws^2 + 2*wf*zf*(ws^2 + a*h + 1))*o^4 + pi*(wf^2*(h*ws^2 + a) + 2*wf*ws^2*zf - a*k1*k2)*o^2;
D=d1*d2-d3*d4;
l=l+1;
R(l,1)=A;
R(l,2)=o;
R(l,3)=D/abs(D);
end
end
end
R=sortrows(R,-1);
for k=1:size(R,1)
if R(k,3)==1
n=n+1;
if n==1;
ns1=ns1+1;
As1(ns1)=R(k,1);
Zfs1(ns1)=zf;
elseif n==2
ns2=ns2+1;
As2(ns2)=R(k,1);
Zfs2(ns2)=zf;
end
end
if R(k,3)==-1
nu=nu+1;
Au(nu)=R(k,1);
Zfu(nu)=zf;
end
end
R=0;l=0;
end
if ns1>0
hp{1} = plot(Zfs1,As1,'-k', 'DisplayName','ns_1 > 0');
hold on
end
if ns2>0
hp{2} = plot(Zfs2,As2,'-k', 'DisplayName','ns_2 > 0');
hold on
end
if nu>0
hp{3} = plot(Zfu,Au,':k', 'DisplayName','nu > 0');
end
legend([hp{[1 2]}], 'Location','best')
I still believe that using different line styles would make the plot easier to interpret.
Experiment to get different results.
.

Sign in to comment.

More Answers (0)

Categories

Find more on Graphics Object Properties in Help Center and File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!