Hidden layer activations with Neural Network Toolbox
12 views (last 30 days)
Show older comments
Martijn Onderwater
on 23 Sep 2011
Answered: Greg Heath
on 2 Sep 2016
Hello,
I have recently started using Matlab's Neural Network Toolbox, after some years of working with Netlab. Does anybody know how to get the activations (=output of the transfer function) of the hidden layers?
So if I create a 4-2-4 network:
net = feedforwardnet(2,'trainlm');
net = configure(net,randn(4,10),randn(4,10));
inp = randn(4,1);
out = sim(net, inp);
How can I then find the output of the hidden layer?
Regards,
Martijn
0 Comments
Accepted Answer
Greg Heath
on 2 Sep 2016
The easiest way to obtain the hidden layer output of a I-H-O net is to just use the weights to create a net with no hidden layer with topology I-H.
Hope this helps.
Thank you for formally accepting my answer
Greg
0 Comments
More Answers (2)
HunterE
on 25 Aug 2016
You can also use genFunction to generate a .m file which should exactly reproduce the model in your net object. Then you can edit the resulting .m file to cause it to return the activations. For larger networks this is more practical than re-coding it yourself.
However, is there really no easier way to access the hidden layer activations??? If so this is a serious oversight!!
0 Comments
See Also
Categories
Find more on Deep Learning Toolbox in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!