Newton Raphson multivariate xy equilibrium
2 views (last 30 days)
Show older comments
Hello, I am developing a code to find the equilibrium between xy and the behavior of the temperature and each of the components. The 2 variables I have to find are y component and T the temperature. I think the code is good but obviously have some issues since it isn’t returning the right answer. If you could help me I will be really grateful.
clc
clear
close all
%Vector de x
n=100;
x=linspace(0,1,n);
%Vector para guardas las variables
yresp = zeros(n,1);
Tresp = zeros(n,1);
%Inicializacion;
for i = 1: n
iter=0;
itermax=1000;
error=1000;
tol=1e-6;
% Inicialización
m0= [0.01 ; 400]';
% Recorrido del método NR multivariado
while error>tol && iter<itermax
f0= raoult(m0,x(i)) ;
j0=jacobiano(m0,x(i)) ;
delta=-(j0\f0);
xnew=m0+delta;
% Criterio del ciclo
error=norm (delta) ;
% Reemplazo nuevo valor
m0=xnew;
end
yresp(i)= xnew(1);
Tresp(i) = xnew(2);
end
figure (1)
plot(x,Tresp, 'r',yresp,Tresp,'b')
legend ('x' ,'y')
xlabel 'x,y, Benceno'
ylabel 'T (K)'
figure (2)
plot(x,yresp)
xlabel 'x'
ylabel 'y'
legend 'Benceno'
function j = jacobiano(m,x1)
n = length(x1);
h = 1e-9;
for i=1:n
dh = zeros(n,1);
dh(i) = h;
derv = (raoult(m+dh,x1))-raoult(m,x1)/(h);
j(:,i) = derv;
end
end
CONSTANTES
function resp = Antoine(T)
%Benceno
A(1)= 6.01905; B(1) = 1204.637; C(1)=53.081;
%Tolueno
A(2)=6.08426; B(2)= 1347.2; C(2)=53.363;
resp (:,1) = 10^(A(1)-B(1)/(T+C(1)));
resp (:,2) = 10^(A(2)-B(2)/(T+C(2)));
end
function gamma= wilson (T,x)
x1 = x;
x2 = 1-x1;
%Benceno(1)
%Tolueno (2)
v251 = 90.4; v252 = 104.9 ;
vb1=96; vb2=118.2;
delta251=18.8; delta252=18.7;
tb1=80.09; tb2=110.622;
eps12=0.0851; eps21 = -0.0884;
R = 8.314;
z = 2;
beta1 =(vb1-v251)/(tb1-25);
beta2= (vb2-v252)/(tb2-25);
v1= v251+beta1*((T-273.15)-25);
v2= v252+beta2*((T-273.15)-25);
delta1= (v251/v1)*delta251;
delta2= (v252/v2)*delta252;
lambda11 = -(2/z)*v1*(delta1)^2 ;
lambda12 = -(1-eps12)*(2/z)*((v1*v2)^0.5)*(delta2*delta1);
lambda21 = -(1-eps21)*(2/z)*((v1*v2)^0.5)*(delta2*delta1);
lambda22 = -(2/z)*v2*(delta2)^2 ;
A21= (v1/v2)*exp(-(lambda21-lambda22)/(R*T));
A12=(v2/v1)*exp(-(lambda12-lambda11)/(R*T));
gamma(1) = exp(-log(x1+A12*x2)+(x2*((A12/(x1+(A12*x2)))-(A21/((A21*x1+x2))))));
gamma(2) = exp(-log(x2+A21*x1)-(x1*((A12/(x1+(A12*x2)))-(A21/((A21*x1+x2))))));
end
function resp = raoult(m,x1)
P = 101.325 ;
y1 = m(1);
T = m(2);
Psat = Antoine(T);
gm = wilson(x1,T);
resp(:,1) = x1.*gm(1).*Psat(1)- y1*P;
resp(:,2) = (1-x1).*gm(2).*Psat(2)- (1-y1)*P;
end
0 Comments
Accepted Answer
Torsten
on 6 Mar 2022
function main
%Vector de x
n=100;
x=linspace(0,1,n);
%Vector para guardas las variables
yresp = zeros(n,1);
Tresp = zeros(n,1);
m0= [0.01 ; 400]';
for i=1:n
fun = @(m0)raoult(m0,x(i)) ;
sol = fsolve(fun,m0);
yresp(i)= sol(1);
Tresp(i)= sol(2);
m0 = sol;
end
figure (1)
plot(x,Tresp, 'r',yresp,Tresp,'b')
legend ('x' ,'y')
xlabel 'x,y, Benceno'
ylabel 'T (K)'
figure (2)
plot(x,yresp)
xlabel 'x'
ylabel 'y'
legend 'Benceno'
end
function resp = Antoine(T)
%Benceno
A(1)= 6.01905; B(1) = 1204.637; C(1)=53.081;
%Tolueno
A(2)=6.08426; B(2)= 1347.2; C(2)=53.363;
resp (:,1) = 10^(A(1)-B(1)/(T+C(1)));
resp (:,2) = 10^(A(2)-B(2)/(T+C(2)));
end
function gamma= wilson (T,x)
x1 = x;
x2 = 1-x1;
%Benceno(1)
%Tolueno (2)
v251 = 90.4; v252 = 104.9 ;
vb1=96; vb2=118.2;
delta251=18.8; delta252=18.7;
tb1=80.09; tb2=110.622;
eps12=0.0851; eps21 = -0.0884;
R = 8.314;
z = 2;
beta1 =(vb1-v251)/(tb1-25);
beta2= (vb2-v252)/(tb2-25);
v1= v251+beta1*((T-273.15)-25);
v2= v252+beta2*((T-273.15)-25);
delta1= (v251/v1)*delta251;
delta2= (v252/v2)*delta252;
lambda11 = -(2/z)*v1*(delta1)^2 ;
lambda12 = -(1-eps12)*(2/z)*((v1*v2)^0.5)*(delta2*delta1);
lambda21 = -(1-eps21)*(2/z)*((v1*v2)^0.5)*(delta2*delta1);
lambda22 = -(2/z)*v2*(delta2)^2 ;
A21= (v1/v2)*exp(-(lambda21-lambda22)/(R*T));
A12=(v2/v1)*exp(-(lambda12-lambda11)/(R*T));
gamma(1) = exp(-log(x1+A12*x2)+(x2*((A12/(x1+(A12*x2)))-(A21/((A21*x1+x2))))));
gamma(2) = exp(-log(x2+A21*x1)-(x1*((A12/(x1+(A12*x2)))-(A21/((A21*x1+x2))))));
end
function resp = raoult(m,x1)
P = 101.325 ;
y1 = m(1);
T = m(2);
Psat = Antoine(T);
%gm = wilson(x1,T)
gm(1:2) = 1.0;
resp(:,1) = x1.*gm(1).*Psat(1)- y1*P;
resp(:,2) = (1-x1).*gm(2).*Psat(2)- (1-y1)*P;
end
I think you should check the calculation of the activity coefficients.
5 Comments
Torsten
on 6 Mar 2022
Edited: Torsten
on 7 Mar 2022
%Vector de x
n=100;
x=linspace(0,1,n);
%Vector para guardas las variables
yresp = zeros(n,1);
Tresp = zeros(n,1);
%Inicializacion;
for i = 1: n
iter=0;
itermax=1000;
error=1000;
tol=1e-6;
% Inicialización
m0= [0.01 ; 400];
% Recorrido del método NR multivariado
while error>tol && iter<itermax
f0= raoult(m0,x(i)) ;
j0=jacobiano(m0,x(i)) ;
delta=-(j0\f0);
xnew=m0+delta;
% Criterio del ciclo
error=norm (delta) ;
% Reemplazo nuevo valor
m0=xnew;
end
yresp(i) = xnew(1);
Tresp(i) = xnew(2);
end
figure (1)
plot(x,Tresp, 'r',yresp,Tresp,'b')
legend ('x' ,'y')
xlabel 'x,y, Benceno'
ylabel 'T (K)'
figure (2)
plot(x,yresp)
xlabel 'x'
ylabel 'y'
legend 'Benceno'
end
function j = jacobiano(m,x1)
y = raoult(m,x1);
h = 1e-8;
for i=1:numel(m)
m(i) = m(i) + h;
yh = raoult(m,x1);
j(:,i) = (yh-y)/h;
m(i) = m(i) - h;
end
end
CONSTANTES
function resp = Antoine(T)
%Benceno
A(1)= 6.01905; B(1) = 1204.637; C(1)=53.081;
%Tolueno
A(2)=6.08426; B(2)= 1347.2; C(2)=53.363;
resp(1,:) = 10^(A(1)-B(1)/(T+C(1)));
resp(2,:) = 10^(A(2)-B(2)/(T+C(2)));
end
function gamma= wilson (T,x)
x1 = x;
x2 = 1-x1;
%Benceno(1)
%Tolueno (2)
v251 = 90.4; v252 = 104.9 ;
vb1=96; vb2=118.2;
delta251=18.8; delta252=18.7;
tb1=80.09; tb2=110.622;
eps12=0.0851; eps21 = -0.0884;
R = 8.314;
z = 2;
beta1 =(vb1-v251)/(tb1-25);
beta2= (vb2-v252)/(tb2-25);
v1= v251+beta1*((T-273.15)-25);
v2= v252+beta2*((T-273.15)-25);
delta1= (v251/v1)*delta251;
delta2= (v252/v2)*delta252;
lambda11 = -(2/z)*v1*(delta1)^2 ;
lambda12 = -(1-eps12)*(2/z)*((v1*v2)^0.5)*(delta2*delta1);
lambda21 = -(1-eps21)*(2/z)*((v1*v2)^0.5)*(delta2*delta1);
lambda22 = -(2/z)*v2*(delta2)^2 ;
A21= (v1/v2)*exp(-(lambda21-lambda22)/(R*T));
A12=(v2/v1)*exp(-(lambda12-lambda11)/(R*T));
gamma(1) = exp(-log(x1+A12*x2)+(x2*((A12/(x1+(A12*x2)))-(A21/((A21*x1+x2))))));
gamma(2) = exp(-log(x2+A21*x1)-(x1*((A12/(x1+(A12*x2)))-(A21/((A21*x1+x2))))));
end
function resp = raoult(m,x1)
P = 101.325 ;
y1 = m(1);
T = m(2);
Psat = Antoine(T);
%gm = wilson(x1,T);
gm(1:2) = 1.0;
resp(1,:) = x1.*gm(1).*Psat(1)- y1*P;
resp(2,:) = (1-x1).*gm(2).*Psat(2)- (1-y1)*P;
end
I used your code for the version with activity coefficients equal to 1.
You will have to replace "wilson" with your corrected version.
More Answers (0)
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!