Plotting a high order function

1 view (last 30 days)
Gabriel Sheets
Gabriel Sheets on 13 Mar 2022
Commented: VBBV on 30 Mar 2022
I just solved a differential equation numerically (and solved a system of 11 eq. 11 unknowns), which is denoted by my S-variable, and am trying to plot the solution against x (same x as for the Analytical Solution -- x = 0:del_x:L). When I try to plot(x,f2(x,S)), or even plot(x,f2(x,S(1),S(2),S(3),etc.)), I get an error stating, "Too many inputs".
What am I missing in my code?
Thanks in advance!
%Consolidating b-matrix values
c1 = (7500-((50^3)/3600)*2.5)/600000;
c2 = (15000-((100^3)/3600)*2.5)/600000;
c3 = (22500-((150^3)/3600)*2.5)/600000;
c4 = (30000-((200^3)/3600)*2.5)/600000;
c5 = (37500-((250^3)/3600)*2.5)/600000;
c6 = (45000-((300^3)/3600)*2.5)/600000;
c7 = (52500-((350^3)/3600)*2.5)/600000;
c8 = (60000-((400^3)/3600)*2.5)/600000;
c9 = (67500-((450^3)/3600)*2.5)/600000;
c10 = (75000-((500^3)/3600)*2.5)/600000;
c11 = (82500-((550^3)/3600)*2.5)/600000;
%b-matrix
b = [c1;c2;c3;c4;c5;c6;c7;c8;c9;c10;c11];
%A-matrix
A = [2 1 0 0 0 0 0 0 0 0 0;
1 2 1 0 0 0 0 0 0 0 0;
0 1 2 1 0 0 0 0 0 0 0;
0 0 1 2 1 0 0 0 0 0 0;
0 0 0 1 2 1 0 0 0 0 0;
0 0 0 0 1 2 1 0 0 0 0;
0 0 0 0 0 1 2 1 0 0 0;
0 0 0 0 0 0 1 2 1 0 0;
0 0 0 0 0 0 0 1 2 1 0;
0 0 0 0 0 0 0 0 1 2 1;
0 0 0 0 0 0 0 0 0 1 2];
%Solution to Differential Equation
S = A\b;
f2 = @(x) (S(1)*x.^10)+(S(2)*x.^9)+(S(3)*x.^8)+(S(4)*x.^7)+(S(5)*x.^6)+(S(6)*x.^5)+(S(7)*x.^4)+(S(8)*x.^3)+(S(9)*x.^2)+(S(10)*x)+S(11);
%Plot of Analytical Solution
x = 0:del_x:L;
Unrecognized function or variable 'del_x'.
f1 = @(x,E,I,Wo,L) Wo/(120*E*I*L)*(-x.^5+(2*(L^2)*x.^3)-(x.*L^4));
subplot(2,1,1)
plot(x,f1(x,E,I,Wo,L),'r-')
xlabel('Axial Position (cm)')
ylabel('Displacement (cm)')
title('Analytical Solution')
hold on
subplot(2,1,2)
plot(x,f2(x,S),'.k')

Accepted Answer

VBBV
VBBV on 13 Mar 2022
plot(x,f2(x),'.k')
give the necessary input values to functions created.
  3 Comments
Gabriel Sheets
Gabriel Sheets on 13 Mar 2022
There it is! -- I thought I already tried that (but I guess not).
VBBV
VBBV on 30 Mar 2022
please accept the answer if it solved the problem, :) thanks

Sign in to comment.

More Answers (0)

Categories

Find more on Numerical Integration and Differential Equations in Help Center and File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!