Matlab simulation for planet motion
10 views (last 30 days)
Show older comments
There were some attemps simulating planetary motion already, but I think mine is straightforward by solving and updating position via with Euler Cromers method:
t = 0;
while t < 10
pos1 = [1 2 3];
pos2 = [4 5 6];
m1 = 1;
m2 = 2;
G = 1;
r1 = pos1-pos2;
r2 = pos2-pos1;
F1 = G*m1*m2/norm(r1).^2.*r1/norm(r1);
F2 = G*m1*m2/norm(r2).^2.*r2/norm(r2);
dt = 0.1;
p1 = [0 100 0];
p2 = [0 100 0];
p1 = p1+F1.*dt;
p2 = p2+F2.*dt;
pos1 = pos1+p1/m1;
pos2 = pos2+p2/m2;
t = t+dt;
hold all;
plot3(pos1(1),pos1(2),pos1(3),'rx')
plot3(pos2(1),pos2(2),pos2(3),'bx')
end
However I don't really receive a plot of multiple data points, just 2 crosses remaining stationary. Also I get a 2-D plot even though I reverted to plot3
1 Comment
KSSV
on 16 Mar 2022
You can change it to 3D using view.
plot3(pos1(1),pos1(2),pos1(3),'rx')
plot3(pos2(1),pos2(2),pos2(3),'bx')
view(3)
Accepted Answer
James Tursa
on 16 Mar 2022
The initial condition for position and velocity need to be outside the loop, prior to loop entry.
More Answers (1)
KSSV
on 16 Mar 2022
t = 0;
m1 = 1;
m2 = 2;
G = 1;
pos01 = [1 2 3];
pos02 = [4 5 6];
pos1 = zeros([],3) ;
pos2 = zeros([],3) ;
iter = 0 ;
while t < 10
iter = iter+1 ;
r1 = pos01-pos02;
r2 = pos02-pos01;
F1 = G*m1*m2/norm(r1).^2.*r1/norm(r1);
F2 = G*m1*m2/norm(r2).^2.*r2/norm(r2);
dt = 0.1;
p1 = [0 100 0];
p2 = [0 100 0];
p1 = p1+F1.*dt;
p2 = p2+F2.*dt;
pos1(iter,:) = pos01+p1/m1;
pos2(iter,:) = pos02+p2/m2;
pos01 = pos1(iter,:) ;
pos02 = pos2(iter,:) ;
t = t+dt;
end
figure
hold on
plot3(pos1(:,1),pos1(:,2),pos1(:,3),'rx')
plot3(pos2(:,1),pos2(:,2),pos2(:,3),'bx')
view(3)
See Also
Categories
Find more on Earth and Planetary Science in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!