How can i generate an Hankel matrix of the lorenz system?

7 views (last 30 days)
hi, i'd like to know how i can create the Hankel matrix of the lorenz system to perform it over a DMD algorithm. Thank all for the help!!
  1 Comment
ANTONINO BIANCUZZO
ANTONINO BIANCUZZO on 5 Apr 2022
Update: I built the matrix and I performed the DMD algorithm, but, as my final step in this code, i could not to plot the system yet. I attach the code afterwards: I tried two way without result
clear all, close all, clc
Beta = [10; 28; 8/3]; % chaotic values
x0 = [0; 1; 20]; % initial condition
dt = 0.001;
tspan = dt:dt:9; % 9.000 time span
%% ode options
options = odeset('RelTol',1e-12,'AbsTol',1e-12*ones(1,3));
[t,x] = ode45(@(t,x)lorenz(t,x,Beta),tspan,x0,options);
%% hankel matrix
x = x.';
n = 6000; % number of rows
m = 3000; % number of columns
index1 = 1:n;
index2 = n:n+m-1;
X = []; Xprime=[];
for ir = 1:size(x,1)
% Hankel blocks ()
c = x(ir,index1).'; r = x(ir,index2);
H = hankel(c,r).';
c = x(ir,index1+1).'; r = x(ir,index2+1);
UH= hankel(c,r).';
X=[X,H]; Xprime=[Xprime,UH];
end
%% DMD of x
r = 50;
[U, S, V] = svd(X, 'econ');
r = min(r, size(U,2));
U_r = U(:, 1:r); % truncate to rank-r
S_r = S(1:r, 1:r);
V_r = V(:, 1:r);
Atilde = U_r' * Xprime * V_r / S_r; % low-rank dynamics
[W_r, D] = eig(Atilde);
Phi = Xprime * V_r / S_r * W_r; % DMD modes
%PhiP = U_r * V_r; % Projected DMD modes
lambda = diag(D); % discrete-time eigenvalues
omega = log(lambda)/dt; % continuous-time eigenvalues
% Compute DMD mode amplitudes b
x1 = X(:, 2);
b = Phi\x1; % equal to b = pinv(Phi)*x1
% DMD reconstruction
time_dynamics = zeros(r, length(t));
for iter = 1:length(t)
time_dynamics(:,iter) = (b.*exp(omega*t(iter)));
end
Xdmd = Phi * time_dynamics;
surfl(real(Xdmd).');
% DMD reconstruction from "Data-driven spectral analysis for coordinative structures in ..."
%rr = length(lambda) ;
%T = size(X,2) ;
%time_dmd = zeros(T-1,rr);
%for iter = 1:T-1
% for p = 1:rr
% time_dmd(iter,p) = b(p)*(exp(omega(p)*t(iter)));% time dynamics
% Xdm(:,iter,p) = real(Phi(:,p)*(b(p).*exp(omega(p)*t(iter))));% reconstruct
% end
%end
%X_dmd = sum(Xdm,3) ;

Sign in to comment.

Answers (1)

Nithin
Nithin on 3 Nov 2023
Hi Antonino,
I understand that you want to create the Hankel matrix of the Lorenz system, perform it over a DMD algorithm and then plot it.
To implement this, kindly refer to the following code snippet:
clc;
clear all;
close all;
% Define the Lorenz system function
lorenz = @(t,x,Beta) [Beta(1)*(x(2)-x(1)); x(1)*(Beta(2)-x(3))-x(2); x(1)*x(2)-Beta(3)*x(3)];
Beta = [10; 28; 8/3]; % chaotic values
x0 = [0; 1; 20]; % initial condition
dt = 0.001;
tspan = dt:dt:9; % 9.000 time span
% ode options
options = odeset('RelTol',1e-12,'AbsTol',1e-12*ones(1,3));
[t,x] = ode45(@(t,x)lorenz(t,x,Beta),tspan,x0,options);
% hankel matrix
x = x.';
n = 6000; % number of rows
m = 3000; % number of columns
index1 = 1:n;
index2 = n:n+m-1;
X = []; Xprime=[];
for ir = 1:size(x,1)
% Hankel blocks ()
c = x(ir,index1).'; r = x(ir,index2);
H = hankel(c,r).';
c = x(ir,index1+1).'; r = x(ir,index2+1);
UH= hankel(c,r).';
X=[X,H]; Xprime=[Xprime,UH];
end
% DMD of x
r = 50;
[U, S, V] = svd(X, 'econ');
r = min(r, size(U,2));
U_r = U(:, 1:r); % truncate to rank-r
S_r = S(1:r, 1:r);
V_r = V(:, 1:r);
Atilde = U_r' * Xprime * V_r / S_r; % low-rank dynamics
[W_r, D] = eig(Atilde);
Phi = Xprime * V_r / S_r * W_r; % DMD modes
%PhiP = U_r * V_r; % Projected DMD modes
lambda = diag(D); % discrete-time eigenvalues
omega = log(lambda)/dt; % continuous-time eigenvalues
% Compute DMD mode amplitudes b
x1 = X(:, 2);
b = Phi\x1; % equal to b = pinv(Phi)*x1
% DMD reconstruction
time_dynamics = zeros(r, length(t));
for iter = 1:length(t)
time_dynamics(:,iter) = (b.*exp(omega*t(iter)));
end
Xdmd = Phi * time_dynamics;
% Plotting
figure;
surfl(real(Xdmd).');
xlabel('Time');
ylabel('DMD Mode');
zlabel('Amplitude');
title('DMD Reconstruction of Lorenz System');
For more information regarding “hankel” and “surf1”, kindly refer to the following MATLAB documentation:
I hope it helps.
Regards,
Nithin Kumar.

Categories

Find more on Linear Algebra in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!