Function to return Interpolated Value at one query point

13 views (last 30 days)
I have created an interpolation surface of my experimental data (xA,yA,zA) to a grid with the code below, and now would like to create a function to return the interpolated value at a given single querry point, for example (.001237, .002954).
How can I create an F(x,y) that will return a single value, the interpolated value of z at the point (x,y)?
!---------------------------------------------
[xq,yq] = meshgrid(.001:.00005:.005);
z2 = griddata(xA,yA,zA,xq,yq,'cubic');
!-----------------------------------------------

Accepted Answer

Star Strider
Star Strider on 8 Apr 2022
Use the griddedInterpolant function, and then experiment with the actual data to see what gives the best results —
xA = (rand(20,1))*0.005;
yA = (rand(20,1))*0.005;
zA = (rand(20,1))*0.005;
[xq,yq] = meshgrid(.001:.00005:.005);
z2 = griddata(xA,yA,zA,xq,yq,'cubic')
z2 = 81×81
0.0020 0.0019 0.0019 0.0018 0.0018 0.0017 0.0016 0.0018 0.0021 0.0021 0.0020 0.0020 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0014 0.0013 0.0012 0.0010 0.0009 0.0008 0.0007 0.0006 0.0005 0.0004 0.0004 0.0020 0.0020 0.0019 0.0019 0.0018 0.0017 0.0019 0.0021 0.0021 0.0021 0.0020 0.0019 0.0019 0.0018 0.0018 0.0017 0.0016 0.0015 0.0014 0.0014 0.0012 0.0011 0.0010 0.0009 0.0008 0.0007 0.0006 0.0005 0.0004 0.0004 0.0021 0.0020 0.0020 0.0019 0.0018 0.0021 0.0022 0.0022 0.0021 0.0021 0.0020 0.0019 0.0019 0.0018 0.0017 0.0016 0.0016 0.0015 0.0014 0.0013 0.0012 0.0011 0.0010 0.0009 0.0008 0.0007 0.0005 0.0005 0.0004 0.0004 0.0021 0.0021 0.0020 0.0019 0.0022 0.0023 0.0022 0.0022 0.0021 0.0020 0.0020 0.0019 0.0018 0.0018 0.0017 0.0016 0.0015 0.0015 0.0014 0.0013 0.0012 0.0011 0.0010 0.0009 0.0008 0.0006 0.0005 0.0005 0.0004 0.0004 0.0022 0.0021 0.0021 0.0023 0.0023 0.0022 0.0022 0.0021 0.0021 0.0020 0.0019 0.0019 0.0018 0.0017 0.0016 0.0016 0.0015 0.0014 0.0013 0.0013 0.0012 0.0011 0.0010 0.0009 0.0008 0.0006 0.0005 0.0005 0.0004 0.0004 0.0022 0.0022 0.0024 0.0023 0.0023 0.0022 0.0022 0.0021 0.0020 0.0020 0.0019 0.0018 0.0017 0.0017 0.0016 0.0015 0.0014 0.0014 0.0013 0.0012 0.0011 0.0010 0.0010 0.0009 0.0007 0.0006 0.0005 0.0004 0.0004 0.0004 0.0023 0.0024 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019 0.0018 0.0018 0.0017 0.0016 0.0015 0.0015 0.0014 0.0013 0.0012 0.0012 0.0011 0.0010 0.0009 0.0008 0.0007 0.0006 0.0005 0.0004 0.0004 0.0003 0.0025 0.0024 0.0024 0.0023 0.0022 0.0022 0.0021 0.0020 0.0019 0.0019 0.0018 0.0017 0.0016 0.0016 0.0015 0.0014 0.0013 0.0013 0.0012 0.0011 0.0010 0.0010 0.0009 0.0008 0.0007 0.0006 0.0005 0.0004 0.0004 0.0003 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0020 0.0020 0.0019 0.0018 0.0017 0.0016 0.0016 0.0015 0.0014 0.0013 0.0013 0.0012 0.0011 0.0011 0.0010 0.0009 0.0008 0.0008 0.0007 0.0006 0.0005 0.0004 0.0004 0.0003 0.0025 0.0024 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019 0.0018 0.0017 0.0017 0.0016 0.0015 0.0014 0.0014 0.0013 0.0012 0.0011 0.0011 0.0010 0.0009 0.0009 0.0008 0.0007 0.0007 0.0006 0.0005 0.0004 0.0004 0.0003
F = griddedInterpolant(z2);
xp = 0.001237;
yp = 0.002954;
zp1 = F(xp, yp)
zp1 = 0.0020
% zp2 = F(yp, xp)
figure
surf(xq,yq,z2)
hold on
stem3(xp, yp, zp1, '^r', 'MarkerSize',10, 'MarkerFaceColor','r')
% stem3(yp, xp, zp2, '^g', 'MarkerSize',10, 'MarkerFaceColor','g')
hold off
xlabel('x')
ylabel('y')
view(-45,30)
It would help to have the actual data.
.
  2 Comments
Thomas Kane
Thomas Kane on 8 Apr 2022
Thank you! This is just what I was looking for. Yes, I will experiment with the interpolation type to fine tune. Your code and the beautiful graphic are wonderfully illustrative. Thanks again.
Star Strider
Star Strider on 8 Apr 2022
As always, my pleasure!
I very much appreciate your compliment!

Sign in to comment.

More Answers (0)

Categories

Find more on Interpolation in Help Center and File Exchange

Products


Release

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!