How many dimensions do I need?
7 views (last 30 days)
Show older comments
Create a script to compute the number of feature dimensions N needed to represent at least 99.9% of the variance in the feature set of the humanactivity dataset using the 'pca' function.
The steps are:
- Compute eigvals using the 'pca' function
- Define vector cumulative_percent_variance_permode, which is a vector the same size as eigvals that contains 100 times (to convert fraction to percentage) the cumulative sum of the normalized eigenvalues
- Define N as the number of eigenvectors needed to capture at least 99.9% of the variation in our dataset D
Script
load humanactivity.mat
D = feat; % [24075 x 60] matrix containing 60 feature measurements from 24075 samples
% compute eigvals
% compute the cumulative_percent_variance_permode vector.
% Define N as the number of eigenvectors needed to capture at least 99.9% of the variation in D.
0 Comments
Answers (2)
Himanshu Desai
on 1 Jun 2023
load humact.mat
D = feat; % [24075 x 60] matrix containing 60 feature measurements from 24075 samples
% compute eigvals
[eigvects,~,eigvals] = pca(D);
% compute the cumulative_percent_variance_permode vector.
percvar = 100*eigvals/sum(eigvals);
cumulative_percent_variance_permode = cumsum(percvar);
% Define N as the number of eigenvectors needed to capture at least 99.9% of the variation in D.
%N = length(cumulative_percent_variance_permode (cumulative_percent_variance_permode >= 99.9))
%cumulative_percent_variance_permode
N=5;
1 Comment
See Also
Categories
Find more on Dimensionality Reduction and Feature Extraction in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!