How many dimensions do I need?

7 views (last 30 days)
Lisbeth Ccoyo Ortiz
Lisbeth Ccoyo Ortiz on 5 Jun 2022
Commented: Cholla on 26 Dec 2023
Create a script to compute the number of feature dimensions N needed to represent at least 99.9% of the variance in the feature set of the humanactivity dataset using the 'pca' function.
The steps are:
  • Compute eigvals using the 'pca' function
  • Define vector cumulative_percent_variance_permode, which is a vector the same size as eigvals that contains 100 times (to convert fraction to percentage) the cumulative sum of the normalized eigenvalues
  • Define N as the number of eigenvectors needed to capture at least 99.9% of the variation in our dataset D
Script
load humanactivity.mat
D = feat; % [24075 x 60] matrix containing 60 feature measurements from 24075 samples
% compute eigvals
% compute the cumulative_percent_variance_permode vector.
% Define N as the number of eigenvectors needed to capture at least 99.9% of the variation in D.

Answers (2)

Himanshu Desai
Himanshu Desai on 1 Jun 2023
load humact.mat
D = feat; % [24075 x 60] matrix containing 60 feature measurements from 24075 samples
% compute eigvals
[eigvects,~,eigvals] = pca(D);
% compute the cumulative_percent_variance_permode vector.
percvar = 100*eigvals/sum(eigvals);
cumulative_percent_variance_permode = cumsum(percvar);
% Define N as the number of eigenvectors needed to capture at least 99.9% of the variation in D.
%N = length(cumulative_percent_variance_permode (cumulative_percent_variance_permode >= 99.9))
%cumulative_percent_variance_permode
N=5;
  1 Comment
Cholla
Cholla on 26 Dec 2023
How do you got N=5.
since output gives N=56.
can you please explain?

Sign in to comment.


Sam Chak
Sam Chak on 5 Jun 2022
Edited: Sam Chak on 5 Jun 2022
Find the Sample Size N calculation formula in Google and show it here.
Then we maybe able to show how to compute that in MATLAB.
Also consider using the sampsizepwr() function. For more info, read the following:

Categories

Find more on Dimensionality Reduction and Feature Extraction in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!