Unrecognized function or variable 'm_equations'

2 views (last 30 days)
Haya Ali
Haya Ali on 16 Jun 2022
Edited: Haya Ali on 17 Jun 2022
Please help me to resolve the following error.
Error in untitled (line 38)
[alphaM, betaM] = m_equations(V(1), Vrest)
The code is
clear all; close all; clc;
Vrest = 0; % mV− change this to −65 ifdesired
dt = 0.01; % ms
totalTime = 150; % ms
C = 20; % uF/cm^2
V_1 = -1.2; % mV
V_2 = 18; % mV
V_3 = 2; % mV
V_4 = 30; % mV
V_Ca = 120; %mV %Reversal potential for Ca2+ current
V_K = -84; %mV %Reversal potential for K+ current
V_Leak = -60; %mV %Reversal potential for leak current
g_Ca = 4.4; % mS/cm^2 % Maximal conductance associated with Ca2+ current
g_K = 8; % mS/cm^2 % Maximal conductance associated with K+ current
g_Leak = 2; % mS/cm^2 % Conductance associated with leak current
phi = 0.04; %1/ms %Rate scaling parameter
% Vector oftimesteps
t = [0:dt:totalTime];
% samples = length(t);
V = zeros(size(t));
% Current input −− change this to see how different inputs affect the neuron
I_current = ones(1,length(t))*0.0;
I_current(50/dt:end) = 90; % Input of 90 microA/cm2 beginning at 50 ms and steady until end of time period.
% initializing values
V(1) = Vrest; % membrane potential is starting at its resting state
% separate functions to get the alpha and beta values
[alphaM, betaM] = m_equations(V(1), Vrest);
[alphaW, betaW] = w_equations(V(1), Vrest);
% initializing gating variables to the asymptotic values when membrane potential
% is set to the membrane resting value based on equation 13
m(1) = (alphaM / (alphaM + betaM));
w(1) = (alphaW / (alphaW + betaW));
% repeat for time determined in totalTime , by each dt
for i = 1:length(t)
% calculate new alpha and beta based on last known membrane potenatial
[alphaM, betaM] = m_equations(V(i), Vrest);
[alphaW, betaW] = w_equations(V(i), Vrest);
% conductance variables − computed separately to show how this
% changes with membrane potential in one ofthe graphs
conductance_Ca(i) = g_Ca*(m(i));
conductance_K(i)=g_K*(w(i));
% retrieving ionic currents
I_Ca(i) = conductance_Ca(i)*(V(i)-V_Ca);
I_K(i) = conductance_K(i)*(V(i)-V_K);
I_Leak(i) = g_Leak*(V(i)-V_Leak);
% Calculating the input
Input = I_current(i) - (I_Ca(i) + I_K(i) + I_Leak(i));
% Calculating the new membrane potential
V(i+1) = V(i) + Input* dt*(1/C);
% getting new values for the gating variables
m(i+1) = m(i) + (alphaM *(1-m(i)) - betaM * m(i))*dt;
w(i+1) = w(i) + (alphaN *(1-w(i)) - betaN * w(i))*dt;
end
figure('Name', 'Gating Parameters')
plot(t(45/dt:end),m(45/dt:end-1), 'r',t(45/dt:end), w(45/dt:end-1), 'b', 'LineWidth', 2)
legend('m', 'W')
xlabel('Time (ms)')
ylabel('')
title('Gating Parameters')
figure('Name', 'Membrane Potential vs input')
subplot(2,1,1)
plot(t(45/dt:end),V(45/dt:end-1), 'LineWidth', 2)
xlabel('Time (ms)')
ylabel('Voltage (mV)')
title('Action Potential')
xlabel('Time (ms)')
% Special graph to show ionic current movement
Vrest = 0;
voltage = [-100:0.01:100];
for i = 1:length(voltage)
[alphaM, betaM] = m_equations(voltage(i), Vrest);
[alphaW, betaW] = w_equations(voltage(i), Vrest);
taum(i) = 1/(alphaM+betaM);
tauw(i) = 1/(alphaW+betaW);
xm(i) = alphaM/(alphaM+betaM);
xw(i) = alphaw/(alphaw+betaw);
aM(i) = alphaM;
bM(i) = betaM;
aM(i) = alphaM;
bW(i) = betaW;
end
figure('Name', 'Equilibrium Function');
plot(voltage, xm, voltage, xw,'LineWidth', 2);
legend('m', 'w');
title('Equilibrium Function');
xlabel('mV');
ylabel('x(u)');
xlabel('Time (ms)')
function MorrisLecar
%%%%%%%% functions section - always after main code %%%%%%%%%%%%%%%
% calculate alpha m and beta m
function [alpha_m, beta_m] = m_equations(phi,V,V_1,V_2,V_3,V_4)
alpha_m = 0.5*phi* cosh((V-V3)/(2*V4))*(1 + tanh((V-V1)/V2));
beta_m = 0.5*phi* cosh((V-V3)/(2*V4))*(1 - tanh((V-V1)/V2));
end
% calculate alpha w and beta w
function [alpha_w, beta_w] = w_equations(phi,V,V_3,V_4)
alpha_m = 0.5*phi* cosh((V-V3)/(2*V4))*(1 + tanh((V-V3)/V4));
beta_m = 0.5*phi* cosh((V-V3)/(2*V4))*(1 - tanh((V-V3)/V4));
end
end

Answers (1)

Simon Chan
Simon Chan on 16 Jun 2022
Move the line function MorrisLecar to be the first line of your entire code.

Categories

Find more on Debugging and Analysis in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!