4th order ODE, 4 boundary conditions

8 views (last 30 days)
Connor Thompson
Connor Thompson on 11 Jul 2022
Answered: MOSLI KARIM on 16 Feb 2023
I have a 4th order ODE, with 4 boundary conditions.
The ODE problem is
y''''(x) = y(x)*y'''(x) - y'(x)*y''(x)
With the 4 boundary conditions:
y(0) = 0.1, y(1) = 0, y'(0) = 0, y'(1) = 0.
I started off my code by writing the ODE as a system of first order ODE's,
function dydx = ab(x,y)
dydx = zeros(4,1);
dydx(1) = y(2);
dydx(2) = y(3);
dydx(3) = y(4);
dydx(4) = y(1)*y(4) - y(2)*y(3);
Then defining the 4 boundary conditions,
function res = bc4(ya,yb)
res = [ya(1)-0.1; yb(1); ya(2); yb(2)];
Followed by:
solinit = bvpinit(linspace(0,0.05,1), [1, 0]);
sol = bvp4c(@ab, @bc4,solinit);
x = linspace(0,1);
y = deval(sol.x);
plot(x,y(1,:));
However, I already get an error on the second line,
"Not enough input arguements. Erron in __ (line 3)
dydx = y(2)"
Any ideas on what is going wrong?

Answers (2)

Torsten
Torsten on 11 Jul 2022
Edited: Torsten on 11 Jul 2022
%solinit = bvpinit(linspace(0,0.05,1), [1, 0]);
solinit = bvpinit(0:0.05:1, [1, 0,0,0]);
sol = bvp4c(@ab, @bc4,solinit);
%x = linspace(0,1);
%y = deval(sol.x);
%plot(x,y(1,:));
plot(sol.x,[sol.y(1,:);sol.y(2,:)]);
function dydx = ab(x,y)
dydx = zeros(4,1);
dydx(1) = y(2);
dydx(2) = y(3);
dydx(3) = y(4);
dydx(4) = y(1)*y(4) - y(2)*y(3);
end
function res = bc4(ya,yb)
res = [ya(1)-0.1; yb(1); ya(2); yb(2)];
end

MOSLI KARIM
MOSLI KARIM on 16 Feb 2023
%%
function answer_matlab
clc
clear all
close all
format long
mesh=20;
x=linspace(0,1,mesh)
solinit=bvpinit(linspace(0,1,10),[0.1 ;0 ;0; 0])
sol=bvp4c(@fct,@bc,solinit)
y=deval(sol,x)
figure(1)
hold on
plot(x,y(1,:))
function dxdy=fct(x,y)
dxdy=[y(2);y(3);y(4);y(1)*y(4)-y(2)*y(3) ];
end
function res=bc(ya,yb)
res=[ya(1)-0.1
yb(1)
ya(2)
yb(2)
];
end
end

Categories

Find more on Numerical Integration and Differential Equations in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!