how we can solve a determinant

13 views (last 30 days)
Arjun Kumar
Arjun Kumar on 9 Feb 2015
Commented: Arjun Kumar on 10 Feb 2015
A=[1-(x-1)^2,1-x^2,1-(x+1^)2; 2^2-(x-1)^2, 2^2-x^2, 2^2-(x+1)^2; 3^2-(x-1)^2, 3^2-x^2, 3^2-(x+1)^2];
det(A)=0;
det means determinant; please give general solution so that rows and colons can also be made more than 3.

Accepted Answer

Torsten
Torsten on 9 Feb 2015
fun=@(x)det([1-(x-1)^2,1-x^2,1-(x+1^)2; 2^2-(x-1)^2, 2^2-x^2, 2^2-(x+1)^2; 3^2-(x-1)^2, 3^2-x^2, 3^2-(x+1)^2]);
sol=fzero(fun,1);
Best wishes
Torsten.

More Answers (1)

Roger Stafford
Roger Stafford on 9 Feb 2015
@Arjun. As you undoubtedly are aware, any row of a determinant can be subtracted from another row without changing the value of the determinant. Suppose you subtract the first row of your determinant from the second, and then subtract that first row from the third row. The result would be:
det([[1-(x-1)^2,1-x^2,1-(x+1)^2;
3 , 3 , 3 ;
8 , 8 , 8 ]);
Since both the second and third rows are multiples of all ones, the determinant must be identically zero.
That means for all x, the determinant of A is zero. You can never solve for x from det(A) = 0 since it is zero for all possible values of x. If you doubt this reasoning, try using random values for x and evaluating the determinant. You will get only tiny round-off errors as a result.
The same reasoning would apply to the more general case of n rows and columns that you asked about.
  1 Comment
Arjun Kumar
Arjun Kumar on 10 Feb 2015
thank you for your answer. i agree with this

Sign in to comment.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!