Fitting Data to a Square root Cruve

29 views (last 30 days)
I'm looking to fit some data that I have to a function in the form of
y=k(sqrt(x))
with "k" being some constant. How would I find such a line of best fit for the data that I have?

Accepted Answer

Matt J
Matt J on 6 Sep 2022
k=sqrt(x(:))\y(:)
  5 Comments
Matt J
Matt J on 6 Sep 2022
Edited: Matt J on 6 Sep 2022
R2 = 1 - mean( (k*(sqrt(spacing)) - velocity).^2 )/var(velocity,1)
Image Analyst
Image Analyst on 6 Sep 2022
fontSize = 18;
spacing=[0.5,1,1.5,2,2.5,3];
velocity=[55.71428571,72.97297297,88.46153846,100,115.1162791,116.3265306];
coefficients = sqrt(spacing(:))\velocity(:);
fittedVelocity = coefficients*(sqrt(spacing))
fittedVelocity = 1×6
50.2134 71.0125 86.9722 100.4269 112.2806 122.9973
subplot(2, 1, 1);
plot(spacing, velocity, 'rv', spacing, fittedVelocity,'b.-') ;
grid on;
title('Velocity Measurements', 'FontSize', fontSize)
xlabel('Spacing', 'FontSize', fontSize)
ylabel('Velocity', 'FontSize', fontSize)
legend('Original Data', 'Fitted Curve', 'Location', 'northwest')
% Determine and say how well we did with our predictions, numerically, using several metrics like RMSE and MAE.
% Fit a linear model between predicted and true so we can get the R squared.
subplot(2, 1, 2);
% Draw 45 degree line.
line([50, 120], [50, 120], 'Color', 'g', 'LineWidth', 2)
hold on;
plot(velocity, fittedVelocity, 'b.-', 'LineWidth', 2, 'MarkerSize', 25);
grid on;
xlabel('Velocity (Original Data)', 'FontSize', fontSize)
ylabel('Fitted Velocity', 'FontSize', fontSize)
mdl = fitlm(velocity, fittedVelocity);
rSquared = mdl.Rsquared.Ordinary;
caption = sprintf('R Squared = %.3f', rSquared);
title(caption, 'FontSize', fontSize, 'Interpreter', 'none')
legend('Perfect Fit Line', 'Fitted vs. Original Data', 'Location', 'northwest')

Sign in to comment.

More Answers (0)

Categories

Find more on Get Started with Curve Fitting Toolbox in Help Center and File Exchange

Products


Release

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!