Choosing one peak out of two in FFT function

4 views (last 30 days)
Hello,
I have a question about how to choose only one out the two peaks that are produced after applying FFT function.
I have multiple text files where each one has "y" values, each file is at a certain time step so the peak of the FFT function is different for every file. Each one produces two peaks the same way in the image, is there a way to take just one of the highest two peaks for each file and store them to either plot or post process.
I tried findpeaks, but the problem is since it is varying peaks, it is difficult to set a parameter such as 'MinPeakDistance' or other.
I use the following:
A = fft(y);
B = abs(A);
figure()
hold on
semilogy(B)
hold off
even if I use C = max(abs(fft(y))); it would not decide which max to choose
Note: the first image is for one file, the second image is for multiple files
Thank you!

Accepted Answer

William Rose
William Rose on 5 Oct 2022
The output of y=fft(x) is symmetric about the middle of the array y.* This is due to the mathematics of the discrete Fourier transform. So when identifying peaks, you can ignore those that occur above element N/2, where N is the length of x and of y.
*When the input sequence,x, is real numbers.
  7 Comments
Hussein Kokash
Hussein Kokash on 5 Oct 2022
Hello William,
I appreciate your responces, so I am investigating a flow behind an object, I have a line of points behind this object (in the spanwise direction).
At each time step, I have a file that contains the spanwise (z) velocity for all of the points that makes this line (zmin to zmax), this is a sample:
0 -2.9577131E-12 0.236238
0.002 2.2367207E-10 0.236238
0.004 3.4525567E-10 0.236238
0.006 3.1392004E-10 0.236238
0.008 1.7650122E-10 0.236238
0.01 -7.5099878E-12 0.236238
0.012 -1.8817284E-10 0.236238
0.014 -3.1705425E-10 0.236238
0.016 -3.3854163E-10 0.236238
0.018 -2.1011342E-10 0.236238
0.02 1.8830366E-11 0.236238
0.022 2.4242510E-10 0.236238
0.024 3.5704751E-10 0.236238
0.026 3.1862220E-10 0.236238
0.028 1.7535199E-10 0.236238
0.03 -1.3538867E-11 0.236238
0.032 -1.9900941E-10 0.236238
0.034 -3.3320666E-10 0.236238
0.036 -3.6012169E-10 0.236238
0.038 -2.3574904E-10 0.236238
0.04 -7.6009011E-12 0.236238
0.042 2.1944382E-10 0.236238
0.044 3.4179600E-10 0.236238
0.046 3.1526771E-10 0.236238
0.048 1.8628746E-10 0.236238
0.05 1.0866790E-11 0.236238
0.052 -1.6580260E-10 0.236238
0.054 -2.9918222E-10 0.236238
0.056 -3.3471170E-10 0.236238
0.058 -2.2668630E-10 0.236238
0.06 -1.6748083E-11 0.236238
0.062 1.9794763E-10 0.236238
0.064 3.1805352E-10 0.236238
0.066 2.9838742E-10 0.236238
0.068 1.8193196E-10 0.236238
0.07 2.0337331E-11 0.236238
0.072 -1.4520383E-10 0.236238
0.074 -2.7288414E-10 0.236238
0.076 -3.0918668E-10 0.236238
0.078 -2.0794240E-10 0.236238
0.08 -9.7146442E-12 0.236238
0.082 1.9173136E-10 0.236238
0.084 3.0145340E-10 0.236238
0.086 2.7771161E-10 0.236238
0.088 1.6262074E-10 0.236238
0.09 5.5778040E-12 0.236238
0.092 -1.5427218E-10 0.236238
0.094 -2.7635975E-10 0.236238
0.096 -3.0763103E-10 0.236238
0.098 -2.0193161E-10 0.236238
0.1 3.3841662E-13 0.236238
0.102 2.0144567E-10 0.236238
0.104 3.0403225E-10 0.236238
0.106 2.6902292E-10 0.236238
0.108 1.4431987E-10 0.236238
0.11 -1.6204361E-11 0.236238
0.112 -1.7232844E-10 0.236238
0.114 -2.8591619E-10 0.236238
0.116 -3.0836106E-10 0.236238
0.118 -1.9723919E-10 0.236238
0.12 7.6309077E-12 0.236238
0.122 2.1455048E-10 0.236238
0.124 3.2751216E-10 0.236238
0.126 3.0043147E-10 0.236238
0.128 1.7559393E-10 0.236238
0.13 4.9337891E-12 0.236238
0.132 -1.6878562E-10 0.236238
0.134 -3.0112440E-10 0.236238
0.136 -3.3568558E-10 0.236238
0.138 -2.2463601E-10 0.236238
0.14 -1.0262878E-11 0.236238
0.142 2.1156070E-10 0.236238
0.144 3.3978994E-10 0.236238
0.146 3.2244513E-10 0.236238
0.148 1.9825914E-10 0.236238
0.15 1.9627189E-11 0.236238
0.152 -1.6648793E-10 0.236238
0.154 -3.0945631E-10 0.236238
0.156 -3.4744837E-10 0.236238
0.158 -2.3123037E-10 0.236238
0.16 -9.0491139E-12 0.236238
0.162 2.1339540E-10 0.236238
0.164 3.3424095E-10 0.236238
0.166 3.0936684E-10 0.236238
0.168 1.8137765E-10 0.236238
0.17 3.1284328E-12 0.236238
0.172 -1.8034544E-10 0.236238
0.174 -3.2127409E-10 0.236238
0.176 -3.5975507E-10 0.236238
0.178 -2.4529187E-10 0.236238
0.18 -1.9049244E-11 0.236238
0.182 2.1396086E-10 0.236238
0.184 3.4508396E-10 0.236238
0.186 3.2556036E-10 0.236238
0.188 1.9843574E-10 0.236238
0.19 1.9107855E-11 0.236238
0.192 -1.6491127E-10 0.236238
0.194 -3.0476838E-10 0.236238
0.196 -3.4132776E-10 0.236238
0.198 -2.2626663E-10 0.236238
0.2 -2.9577131E-12 0.236238
1st column (z), 2nd column (coresspoding z-velocity), 3rd colum (corresponding time)
The idea is I have say many files like these, where time step is variant.
The reason that I want to know the frequency at of each peak for each file is to see if there is a change in wavelength in time.
What makes it challenging is there are two main frequencies and if I just used the regular max or findpeaks, it would not be quite accurate which one was captured as a peak/frequency.
Thanks again!
William Rose
William Rose on 6 Oct 2022
You're welcome.
You have an interesting problem and an interesting experiment.
The code I provided gives f1, the frequency with the most power in the signal. Obviously the associated wavelength is lambda1=c/f1. The frequencies of the peaks in the "top half" of the spectrum (the part above the Nyquist frequency) have no additional value for your analysis.
Good luck with your work!

Sign in to comment.

More Answers (0)

Products


Release

R2018a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!