PCA matrix data compression help
10 views (last 30 days)
Show older comments
Hi,
I'm making a neural network for classification(newff or patternnet) and I have a input matrix 400x500 (rows x column) and a target vector 1x500 with [zeros ones] my true/false.
Which PCA algorithm and how I should use on my input matrix to get a matrix 100x500 or 10x500 or 5x500 (data compression) but also to use my target matrix with zeros&ones on this data?
Thank you :)
0 Comments
Accepted Answer
Greg Heath
on 21 Oct 2011
For classification, choose the dimensions in the direction of greatest class separation.
This is not guaranteed using PCA which chooses the dimensions with the largest variances.
For a detailed explanation, search comp.ai.neural-nets and/or comp.soft-sys.matlab with
heath cigar
heath parallel cigar
PLS (Partial-Least-Squares) is more appropriate.
Hope this helps.
Greg
0 Comments
More Answers (0)
See Also
Categories
Find more on Dimensionality Reduction and Feature Extraction in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!