The approximation error of Monte-Carlo method
3 views (last 30 days)
Show older comments
Define the in-script function calc_pi(n) which inplements the Monte-Carlo method to approximate pi with n points generated.
the code I have is follows:
function value = calc_pi(n)
x = rand(N,1);
y = rand(N,1);
r = x.^2+y.^2;
inside = r<=1;
outside = r>1;
end
I am not too sure if I got the function right or not for the Monte-Carlo method.
then we need to create row vector N from 1e3 to 1e6 with stepsize 1e3. and use a for loop to create a row vector err such that the i-th element of err(i) is the absolute error to approxiamte pi with N(i) points.
N = [1e3:1e3:1e6];
err = [];
for i = 1:length(N)
err(i) = abs(calc_pi( ? );
end
I'm stuck on what to put after the calc_pi which is in the question mark area.
0 Comments
Accepted Answer
Image Analyst
on 10 Nov 2022
Here's some fixes. Not done but you can continue with your homework until it's done.
N = 1e3 : 1e3 : 1e6;
err = zeros(length(N), 1);
for k = 1:length(N)
n = N(k);
if rem(k, 50) == 0
fprintf('On iteration %d.\n', k)
end
err(k) = abs(calc_pi(n));
end
plot(err, 'b-', 'LineWidth', 2);
xlabel('n')
ylabel('Error')
grid on;
%============================================================
function value = calc_pi(n)
x = rand(n,1);
y = rand(n,1);
r = x.^2+y.^2;
inside = sum(r <= 1);
outside = r>1;
% TO DO assign value.
value = 20;
end
0 Comments
More Answers (0)
See Also
Categories
Find more on Industrial Statistics in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!