why fft of an even and real signal in time domain gives imaginary part?
48 views (last 30 days)
Show older comments
This is the question:
a. Create a real and even-symmetric signal for use as a test signal. Since this is easiest to do when the length is odd, take N to be odd (e.g., N = 21). Verify that the DFT of this signal is purely real, and that it is also even-symmetric.
This is my attempt:
I have a coine function which is real and even and I expecy its fourier transform to be real and conjugate symmetry. I applied f1=fftshift(abs(fft(x1))); for taking the fft and the imaginary part is zero. But for part b it asks:
b. Now take the FFT of the same signal, but with the length three times the original (i.e., N = 63). Verify that the transform is no longer purely real (unless, of course, your test signal were the impulse).
still with the same procedure the imaginary part is zero. Where did I make a mistake?
This is my code for a:
N = 21;
tmin=-1;
tmax=1;
t = linspace(tmin,tmax,N+1);
t(end) = [] ;
fs=1/abs(t(1)-t(2));
a = 2;
x1 = cos(a*pi*t);
figure,plot(t,x1);xlabel 'x axis', ylabel 'y axis', title 'cos(2*pi*t)'
k = ( (-(N-1)/2) : ((N-1)/2) )/N*fs;
f1=fftshift(abs(fft(x1)));
figure,plot(k,f1);xlabel 'x axis', ylabel 'y axis',
title 'fourier transform of cos(2*pi*t)'
figure,plot(k,imag(f1)),
title 'imaginary part of the fourier transform of cos(2*pi*t)'
xlabel 'x axis', ylabel 'y axis'
code for part b:
%% the same signal with three times more points
N2 = 63;
tmin=-1;
tmax=1;
t2 = linspace(tmin,tmax,N2+1);
t2(end) = [] ;
fs2=1/abs(t2(1)-t2(2));
a = 2;
x2 = cos(a*pi*t2);
figure,plot(t2,x2);xlabel 'x axis', ylabel 'y axis', title 'cos(2*pi*t)'
k2 = ( (-(N2-1)/2) : ((N2-1)/2) )/N2*fs2;
f2=fftshift(abs(fft(x2)));
figure,plot(k2,f2);xlabel 'x axis', ylabel 'y axis',
title 'fourier transform of cos(2*pi*t)'
figure,plot(k2,imag(f2)),
title 'imaginary part of the fourier transform of cos(2*pi*t)'
xlabel 'x axis', ylabel 'y axis';
0 Comments
Accepted Answer
Walter Roberson
on 2 Dec 2022
t = linspace(tmin,tmax,N+1);
t(end) = [] ;
Your signal must not return to origin in the final sample. You need a signal such that repmat of the signal would be multiple periods. For example if the signal was triangle 0 1 then if you input 0 1 0 then fft treats it as if it were an indefinite chain of 0 1 0 0 1 0 0 1 0 rather than as 0 1 0 1 0 1...
Also if you are going to use that k then you need to fftshift to plot properly. The negative frequencies are after the positive.
9 Comments
Walter Roberson
on 3 Dec 2022
fft of "the same signal" "with length 63" is probably fft(x1, 63) rather than creating a new signal of length 63
More Answers (1)
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!